Skip to main content
Log in

Preparation of Microcrystalline Cellulose from Bagasse Bleached Pulp Reinforced Polylactic Acid Composite Films

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA) is biodegradable and biocompatible, but some of its functional properties limit its commercial application. To improve the properties of PLA without destroying other useful characteristics, a composite film consisting of microcrystalline cellulose (MCC) and PLA was prepared. In this research, MCC was obtained from bagasse bleached pulp by hydrochloric acid hydrolysis. After being modified by a silane coupling agent (KH550), the MCC was used as reinforcement in the PLA matrix. The degradation performance of the composite film was explored using degradation experiments in which the film was buried in soil. According to the single-factor experiments, the best composite formulation was 3% KH550, 20% KH550-MCC and 15% acetyl tributyl citrate. The results showed that the interfacial compatibility of the MCC/PLA composite films was improved after MCC was modified with KH550. This research showed that the addition of MCC can enhance the degradation rate of MCC/PLA composite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adel, A.M., Z.H.A. El-Wahab, A.A. Ibrahim, and M.T. Al-Shemy. 2011. Characterization of microcrystalline cellulose prepared from lignocellulosic materials Part II Physicochemical properties. Carbohydrate Polymers 83 (2): 676–687.

    Article  CAS  Google Scholar 

  • Adel, A.M., Z.H.A. El-Wahab, A.A. Ibrahim, and M.T. Al-Shemy. 2010. Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresource Technology 101 (12): 4446–4455.

    Article  CAS  Google Scholar 

  • Armentano, I., N. Bitinis, E. Fortunati, S. Mattioli, N. Rescignano, R. Verdejo, M.A. Lopez-Manchado, and J.M. Kenny. 2013. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science 38 (10): 1720–1747.

    Article  CAS  Google Scholar 

  • Arrieta, M., J. López, D. López, J. Kenny, and L. Peponi. 2016. Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products 93: 290–301.

    Article  CAS  Google Scholar 

  • Chen, S., Hai Xin, and Hua Wang. 2013. Effect of two-step treatments on interfacial and mechanical properties of sugarcane rind fiber/natural latex biodegradable composites. Materials Science Forum 789: 106–111.

    Article  Google Scholar 

  • Chuayjuljit, S., S. Suuthai, C. Tunwattanaseree, and S. Charuchinda. 2009. Preparation of microcrystalline cellulose from waste-cotton fabric for biodegradability enhancement of natural rubber sheets. Journal of Reinforced Plastics and Composites 28 (10): 1245–1254.

    Article  CAS  Google Scholar 

  • Coelho, C.C.S., M.A. Cerqueira, R.N. Pereira, L.M. Pastrana, O. Freitas-Silva, A.A. Vicente, L.M.C. Cabral, and J.A. Teixeira. 2017. Effect of moderate electric fields in the properties of starch and chitosan films reinforced with microcrystalline cellulose. Carbohydrate Polymers 174: 1181–1191.

    Article  CAS  Google Scholar 

  • Cui, H., Z. Jin, D. Zheng, W. Tang, Y. Li, Y. Yun, T.Y. Lo, and F. Xing. 2018. Effect of carbon fibers grafted with carbon nanotubes on mechanical properties of cement-based composites. Construction and Building Materials 181: 713–720.

    Article  CAS  Google Scholar 

  • Deshpande, A.P., M.B. Rao, and C.L. Rao. 2000. Extraction of bamboo fibers and their use as reinforcement in polymeric composites. Journal of Applied Polymer Science 76 (1): 83–92.

    Article  CAS  Google Scholar 

  • Farah, S., D.G. Anderson, and R. Langer. 2016. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced Drug Delivery Reviews 107: 367–392.

    Article  CAS  Google Scholar 

  • Ilindra, A., and J.D. Dhake. 2008. Notes microcrystalline cellulose from bagasse and rice straw. Indian Journal of Chemical Technology 15 (5): 497–499.

    CAS  Google Scholar 

  • Jonoobi, M., J. Harun, A.P. Mathew, and K. Oksman. 2010. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Composites Science and Technology 70 (12): 1742–1747.

    Article  CAS  Google Scholar 

  • Kale, B.M., S. Rwahwire, N.K. Kale, and W.B. Musinguzi. 2019. PLA composite films based on acetate substituted microcrystalline cellulose. Key Engineering Materials 801: 133–138.

    Article  Google Scholar 

  • Kamal, M.R., and V. Khoshkava. 2015. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydrate Polymers 123: 105–114.

    Article  CAS  Google Scholar 

  • Lizundia, E., E. Fortunati, F. Dominici, J.L. Vilas, L.M. Leon, I. Armentano, L. Torre, and J.M. Kenny. 2016. PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydrate Polymers 142: 105–113.

    Article  CAS  Google Scholar 

  • Mathew, A.P., K. Oksman, and M. Sain. 2005. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science 97 (5): 2014–2025.

    Article  CAS  Google Scholar 

  • Mohamad Haafiz, M.K., S.J. Eichhorn, A. Hassan, and M. Jawaid. 2013. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydrate Polymers 93 (2): 628–634.

    Article  CAS  Google Scholar 

  • Nazhad, M.M., W. Sridach, E. Retulainen, J. Kuusipalo, and P. Parkpian. 2015. Biodegradation potential of some barrier-coated boards in different soil environments. Journal of Applied Polymer Science 100 (4): 3193–3202.

    Article  Google Scholar 

  • Södergård, A., and M. Stolt. 2002. Properties of lactic acid based polymers and their correlation with composition. Progress in Polymer Science 27 (6): 1123–1163.

    Article  Google Scholar 

  • Suchaiya, V., and D. Aht-ong. 2012. Effects of long chain cellulose ester on mechanical properties of polylactic acid reinforced with microcrystalline cellulose. Advanced Materials Research 488–489: 622–627.

    Article  Google Scholar 

  • Suryanegara, L., A.N. Nakagaito, and H. Yano. 2009. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Composites Science and Technology 69 (7): 1187–1192.

    Article  CAS  Google Scholar 

  • Thakur, M.K., R.K. Gupta, and V.K. Thakur. 2014. Surface modification of cellulose using silane coupling agent. Carbohydrate Polymers 111: 849–855.

    Article  CAS  Google Scholar 

  • Tokiwa, Y., and B.P. Calabia. 2006. Biodegradability and biodegradation of poly(lactide). Applied Microbiology and Biotechnology 72 (2): 244–251.

    Article  CAS  Google Scholar 

  • Vasile, C., D. Pamfil, M. Rapa, R.N. Darie-Nita, A.C. Mitelut, E.E. Popa, P.A. Popescu, M.C. Draghici, and M.E. Popa. 2018. Study of the soil burial degradation of some PLA/CS biocomposites. Composites Part B-Engineering 142: 251–262.

    Article  CAS  Google Scholar 

  • Weng, Y.X., L. Wang, M. Zhang, X.L. Wang, and Y.Z. Wang. 2013. Biodegradation behavior of P(3HB,4HB)/PLA blends in real soil environments. Polymer Testing 32 (1): 60–70.

    Article  CAS  Google Scholar 

  • Wu, W., and J. Wang. 2018. Effect of KH550 on the preparation and compatibility of carbon fibers reinforced silicone rubber composites. Silicon 10: 1903–1910.

    Article  CAS  Google Scholar 

  • Wu, W., and H. Zuo. 2016. Used tire rubber powder/plant cellulose composites treated with coupling agent. Cellulose 23 (3): 1939–1947.

    Article  Google Scholar 

  • Xian, X., X. Wang, Y. Zhu, Y. Guo, and Y. Tian. 2018. Effects of MCC content on the structure and performance of PLA/MCC biocomposites. Journal of Polymers and the Environment 26: 1–9.

    Article  Google Scholar 

  • Xiang, Y., Y. Xie, and G. Long. 2018. Effect of basalt fiber surface silane coupling agent coating on fiber-reinforced asphalt: From macro-mechanical performance to micro-interfacial mechanism. Construction and Building Materials 179: 107–116.

    Article  CAS  Google Scholar 

  • Xie, Y., C.A.S. Hill, Z. Xiao, H. Militz, and C. Mai. 2010. Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing 41 (7): 806–819.

    Article  Google Scholar 

  • Yang, X., F.Y. Han, C.X. Xu, S. Jiang, L.Q. Huang, L.F. Liu, and Z.P. Xia. 2017. Effects of preparation methods on the morphology and properties of nanocellulose (NC) extracted from corn husk. Industrial Crops and Products 109: 241–247.

    Article  CAS  Google Scholar 

  • Zhang, X.B., L.Q. You, and T.G. Wang. 2012. Preparation of domestic honeycomb briquette from corn stover and coal. Advanced Materials Research 535–537: 2123–2126.

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by the National Sugar Industry Technical System Post—the production of sugar by-products is integrated (Grant No. AE30500040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Deng, L., Li, Y. et al. Preparation of Microcrystalline Cellulose from Bagasse Bleached Pulp Reinforced Polylactic Acid Composite Films. Sugar Tech 22, 1138–1147 (2020). https://doi.org/10.1007/s12355-020-00827-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-020-00827-w

Keywords

Navigation