Skip to main content
Log in

Head-on Collision Between Two Hydroelastic Solitary Waves in Shallow Water

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

A comprehensive theoretical study on the head-on collision between two solitary waves in a thin elastic plate floating on an inviscid fluid of finite depth is investigated analytically by means of a singular perturbation method. The effects of plate compression are also taken into account. The Poincaré–Lighthill–Kuo method has been used to derive the solution up to the fourth order of the resulting nonlinear differential equation, which in principle gives the asymptotic series solution. It is found that after collision, both the hydroelastic solitary waves preserves their original shape and positions. However a collision does have imprints on colliding waves with non-uniform phase shift up to the third order which creates tilting in the wave profile. Maximum run-up amplitude, wave speed, phase shift and distortion profile have also been calculated and plotted for two colliding solitary waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Forbes, L.K.: Surface waves of large amplitude beneath an elastic sheet. Part 1. High-order series solution. J. Fluid Mech. 169, 409–428 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Forbes, L.K.: Surface waves of large amplitude beneath an elastic sheet. Part 2. Galerkin solution. J. Fluid Mech. 188, 491–508 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Părău, E.I., Vanden-Broeck, J.M.: Three-dimensional waves beneath an ice sheet due to a steadily moving pressure. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369(1947), 2973–2988 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deike, L., Bacri, J.C., Falcon, E.: Nonlinear waves on the surface of a fluid covered by an elastic sheet. J. Fluid Mech. 733, 394–413 (2013)

    Article  MATH  Google Scholar 

  5. Chen, X.J., Wu, Y.S., Cui, W.C., Tang, X.F.: Nonlinear hydroelastic analysis of a moored floating body. Ocean Eng. 30(8), 965–1003 (2003)

    Article  Google Scholar 

  6. Plotnikov, P.I., Toland, J.F.: Modelling nonlinear hydroelastic waves. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369(1947), 2942–2956 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blyth, M.G., Pru, E.I., Vanden-Broeck, J.M.: Hydroelastic waves on fluid sheets. J. Fluid Mech. 689, 541–551 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Vanden-Broeck, J.M., Părău, E.I.: Two-dimensional generalized solitary waves and periodic waves under an ice sheet. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369(1947), 2957–2972 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Milewski, P.A., Vanden-Broeck, J.M., Wang, Z.: Hydroelastic solitary waves in deep water. J. Fluid Mech. 679, 628–640 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guyenne, P., Părău, E.I.: Forced and unforced flexural-gravity solitary waves. Procedia IUTAM 11, 44–57 (2014)

    Article  Google Scholar 

  11. Alam, M.R.: Dromions of flexural-gravity waves. J. Fluid Mech. 719, 1–13 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sorensen, M.P., Christiansen, P.L., Lomdahl, P.: Solitary waves on nonlinear elastic rods. I. J. Acoust. Soc. Am. 76(3), 871–879 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dai, S.Q.: The interaction of two pairs of solitary waves in a two-fluid system. Sci. China Math. 81(6), 1718–1722 (1984)

    Google Scholar 

  14. Sorensen, M.P., Christiansen, P.L., Lomdahl, P., Skovgaard, O.: Solitary waves on nonlinear elastic rods. II. J. Acoust. Soc. Am. 81(6), 1718–1722 (1987)

    Article  Google Scholar 

  15. Huang, G., Lou, S., Xu, Z.: Head-on collision between two solitary waves in a Rayleigh–Benard convecting fluid. Phys. Rev. E 47(6), R3830 (1993)

    Article  Google Scholar 

  16. Huang, G., Velarde, M.G.: Head-on collision of two concentric cylindrical ion acoustic solitary waves. Phys. Rev. E 53(3), 2988 (1996)

    Article  Google Scholar 

  17. Dai, H.H., Dai, S.Q., Huo, Y.: Head-on collision between two solitary waves in a compressible mooneyrivlin elastic rod. Wave Motion 32(2), 93–111 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Părău, E.I., Dias, F.: Nonlinear effects in the response of a floating ice plate to a moving load. J. Fluid Mech. 460, 281–305 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Demiray, H.: Head-on-collision of nonlinear waves in a fluid of variable viscosity contained in an elastic tube. Chaos Solitons Fract. 41(4), 1578–1586 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ozden, A.E., Demiray, H.: Re-visiting the head-on collision problem between two solitary waves in shallow water. Int. J. Non-Linear Mech. 69, 66–70 (2015)

    Article  MATH  Google Scholar 

  21. Laitone, E.V.: The second approximation to cnoidal and solitary waves. J. Fluid Mech. 9, 430–444 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grimshaw, R.: The solitary wave in water of variable depth. Part 2. J. Fluid Mech. 46, 611–622 (1971)

    Article  MATH  Google Scholar 

  23. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–deVries equation. Phys. Rev. Lett. 19(19), 1095 (1967)

    Article  MATH  Google Scholar 

  24. Lighthill, M.J.: A technique for rendering approximate solutions to physical problems uniformly valid. Philosophical Magaz. Ser. 7. 40(5), 1179–1120 (1949)

  25. Lin, C.C.: On a perturbation theory based on the method of characteristics. J. Math. Phys. 33, 117–134 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  26. Su, C.H., Mirie, R.M.: On head-on collisions between two solitary waves. J. Fluid Mech. 98, 509–525 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuo, Y.H.: On the flow of an incompressible viscous fluid past a flat plate at moderate Reynolds number. J. Math. Phys. 32, 81–101 (1953)

    Article  MathSciNet  Google Scholar 

  28. Dai, S.Q.: Poincare–Lighthill–Kuo method and symbolic computation. Appl. Math. Mech. Engl. Ed. 22(3), 261–269 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Van Dyke, M.: Perturbation methods in fluid mechanics/annotated edition. NASA STI/Recon Technical Report A 75, 46926 (1975)

  30. Zhu, Y., Dai, S.Q.: On head-on collision between two GKDV solitary waves in a stratified fluid. Acta Mech. Sin. 7(4), 300–308 (1991)

    Article  MATH  Google Scholar 

  31. Zhu, Y.: Head-on collision between two mkdv solitary waves in a two-layer fluid system. Appl. Math. Mech. Engl. Ed. 13(5), 407–417 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xia, X., Shen, H.T.: Nonlinear interaction of ice cover with shallow water waves in channels. J. Fluid Mech. Engl. Ed. 467, 259–268 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Bhatti, M.M., Lu, D.Q.: Effect of compression on the head-on collision between two hydroelastic solitary waves. In: Proceedings of the 12th International Conference on Hydrodynamics. Egmond aan Zee, The Netherlands (2016)

  34. Guyenne, P., Părău, E.I.: Finite-depth effects on solitary waves in a floating ice sheet. J. Fluids Struct. 49, 242–262 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Natural Science Foundation of China under Grant No. 11472166. The authors are indebted to the reviewer for his/her critical comments that led to improvement in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Q. Lu.

Appendices

Appendix A: Equation of \(O(\epsilon ^3 )\)

$$\begin{aligned}&4 \bar{k} \frac{\partial \alpha _2}{\partial \eta } + k\frac{\partial \alpha _1}{\partial \xi } \left( 4 \bar{k} \frac{\partial \theta _0}{\partial \eta } - 2aR_1 + 3\alpha _0 -\beta _0 \right) + \bar{k}\frac{\partial \alpha _1}{\partial \eta } \big (2bR_1+3\alpha _0-\beta _0\big ) \nonumber \\&\quad -\, (\alpha _0 + \beta _0 ) \left( k \frac{\partial \beta _1}{\partial \xi } + \bar{k}\frac{\partial \beta _1}{\partial \eta }\right) + \frac{H_0^2}{3} \left( k^3 \frac{\partial ^3}{\partial \xi ^3} - 2\bar{k}^3\frac{\partial ^3}{\partial \eta ^3} \right) (\alpha _1-\beta _1)\nonumber \\&\quad -\, \bar{k} \frac{\partial \beta _0}{\partial \eta } \left[ -2\bar{k}^2 H_0^2 \frac{\partial ^2 \beta _0}{\partial \eta ^2} + \frac{1}{3}k^3H_0^2\frac{\partial ^3 \varphi _0}{\partial \xi ^3} + k\frac{\partial \varphi _0}{\partial \xi } (\alpha _0 +\beta _0) + \alpha _1+ \beta _1 \right] \nonumber \\&\quad +\, k \frac{\partial \alpha _0}{\partial \xi } \left[ k^2 H_0^2 \frac{\partial ^2 \alpha _0}{\partial \xi ^2} + \bar{k}^2 H_0^2 \frac{\partial ^2 \beta _0}{\partial \eta ^2} - \frac{2}{3}\bar{k}^3H_0^2\frac{\partial ^3 \theta _0}{\partial \eta ^3} \right. \nonumber \\&\quad \left. +\, 4 \bar{k} \frac{\partial \theta _1}{\partial \eta } + 2 \bar{k} R_1 \frac{\partial \theta _0}{\partial \eta } -2a^2 R_2 + \bar{k} \frac{\partial \theta _0}{\partial \eta } (3\alpha _0 - \beta _0 ) + 3 \alpha _1 - \beta _1\right] \nonumber \\&\quad +\, k^3 H_0^2 \frac{\partial ^3 \alpha _0}{\partial \xi ^3 } \left( \frac{1}{2}aR_1 + \beta _0 \right) + k^2 \bar{k}^2H_0^2 \frac{\partial ^2 \alpha _0}{\partial \xi ^2} \frac{\partial ^2 \theta _0}{\partial \eta ^2} + \bar{k}^3 H_0^2\nonumber \\&\quad \times \left( \frac{1}{2} bR_1 + \beta _0 + 2\alpha _0 + k \frac{\partial \varphi _0}{\partial \xi } \right) \nonumber \\&\quad - \,\frac{H_0^4}{30} \left( k^5 \frac{\partial ^5 \alpha _0}{\partial \xi ^5} + \frac{3}{2}\bar{k}^5 \frac{\partial ^5 \beta }{\partial \eta ^5} \right) + \Gamma H_0^4 \left( k^5 \frac{\partial ^5 \alpha _0}{\partial \xi ^5} + \bar{k}^5 \frac{\partial ^5 \beta _0}{\partial \eta ^5} \right) \nonumber \\&\quad +\, \sigma H_0^2 \left\{ \left( k \frac{\partial }{\partial \xi } + \bar{k} \frac{\partial }{\partial \eta } \right) \left[ \left( k^2\frac{\partial ^2 }{\partial \xi ^2} + \bar{k}^2 \frac{\partial ^2}{\partial \eta ^2}\right) (\alpha _1+\beta _1) \right. \right. \nonumber \\&\quad \left. \left. +\, 2\bar{k} k \left( k \frac{\partial \theta _0}{\partial \eta }\frac{\partial ^2 \alpha _0}{\partial \xi ^2} +\bar{k} \frac{\partial \varphi _0}{\partial \xi } \frac{\partial ^2 \beta _0}{\partial \eta ^2} \right) \right] + \bar{k} k \left( k^3 \frac{\partial \theta _0}{\partial \eta } \frac{\partial ^3 \alpha _0}{\partial \xi ^3} + \bar{k}^3 \frac{\partial \varphi _0}{\partial \xi } \frac{\partial ^3 \beta _0}{\partial \eta ^3} \right) \right\} \nonumber \\&\quad +\, \Lambda H_0^2 \left\{ \left( k \frac{\partial }{\partial \xi } + \bar{k} \frac{\partial }{\partial \eta }\right) \left[ \left( k^2 \frac{\partial ^2 }{\partial \xi ^2 } + \bar{k}^2 \frac{\partial ^2}{\partial \eta ^2} \right. \right. +\, 2\bar{k} k \frac{\partial ^2}{\partial \xi \partial \eta }\right) (\alpha _1+\beta _1) \nonumber \\&\quad \left. \left. +\, 2\bar{k} k \left( k \frac{\partial \theta _0}{\partial \eta }\frac{\partial ^2 \alpha _0}{\partial \xi ^2} +\bar{k} \frac{\partial \varphi _0}{\partial \xi } \frac{\partial ^2 \beta _0}{\partial \eta ^2} \right) \right] - \bar{k} k \left( k^3 \frac{\partial \theta _0}{\partial \eta } \frac{\partial ^3 \alpha _0}{\partial \xi ^3} + \bar{k}^3 \frac{\partial \varphi _0}{\partial \xi } \frac{\partial ^3 \beta _0}{\partial \eta ^3} \right) \right\} =0. \end{aligned}$$
(A1)

Appendix B: Expressions of the Coefficients

$$\begin{aligned} c_0&= \frac{3}{4\gamma } \left( \frac{2}{3}+\sigma +\Lambda \right) . \end{aligned}$$
(B1)
$$\begin{aligned} c_1&= \frac{3}{10}-\frac{9\Gamma }{\gamma ^2}+\frac{1}{4\gamma }[4c_0 (3\sigma +3\Lambda -1)-3-2\sigma ], \end{aligned}$$
(B2)
$$\begin{aligned} c_2&= \frac{1}{8\gamma ^2}\left[ 540\Gamma -\gamma \lbrace 17+6\sigma +12\Lambda +4c_0 (45\sigma -15+45\Lambda +2\gamma ) \rbrace \right] , \end{aligned}$$
(B3)
$$\begin{aligned} c_3&= \frac{1}{8\gamma } \left[ -540\Gamma +\gamma \lbrace 25+\gamma +15\gamma (\sigma +\Lambda )+12c_0 (15\sigma -5+15\Lambda +\gamma ) \rbrace \right] , \end{aligned}$$
(B4)
$$\begin{aligned} c_4&=\frac{ 1 }{4}\left( \frac{1}{12}+\frac{11}{2\gamma }+c_0-\frac{c_3}{6}-\frac{5c_3}{4\gamma } \right) , \end{aligned}$$
(B5)
$$\begin{aligned} c_5&=\frac{2}{3}c_2+c_3, \end{aligned}$$
(B6)
$$\begin{aligned} c_6&=\frac{27 }{32 \gamma ^2}, \end{aligned}$$
(B7)
$$\begin{aligned} c_7&= \frac{1}{4} \left( -1+\frac{27}{32\gamma }(\sigma +\Lambda )-\frac{21}{4\gamma } -\frac{9}{2}c_0 -\frac{c_3}{2} \right) , \end{aligned}$$
(B8)
$$\begin{aligned} c_8&= \frac{1}{4} \left( \frac{11}{8}-\frac{9\left( 1-\Lambda +\sigma \right) }{4\gamma }+\frac{3}{2}c_0\right) , \end{aligned}$$
(B9)
$$\begin{aligned} c_9&= \frac{1}{4}\left( \frac{3}{4}+3c_0-\frac{29}{4\gamma }+\frac{9}{4\gamma } (-\Lambda -\sigma )\right) , \end{aligned}$$
(B10)
$$\begin{aligned} c_{10}&= \frac{1}{4}\left( \frac{3}{8\gamma }c_2 +1-c_0+\frac{3}{2\gamma }(1+c_3)+\frac{3}{2\gamma }(\sigma -\Lambda )\right) , \end{aligned}$$
(B11)
$$\begin{aligned} c_{11}&= \frac{1}{4}\left( - \frac{1}{8}+\frac{11}{8\gamma }-\frac{7c_0}{4} +\frac{2c_2}{\gamma }+\frac{8c_3}{\gamma } + \frac{c_4}{2}\right) , \end{aligned}$$
(B12)
$$\begin{aligned} c_{12}&=\frac{1}{32}, \end{aligned}$$
(B13)
$$\begin{aligned} c_{13}&= \frac{1}{4} \left( -\frac{3}{4\gamma }+c_0-\frac{4c_2}{3\gamma }-\frac{2c_3}{\gamma }\right) , \end{aligned}$$
(B14)
$$\begin{aligned} c_{14}&=\frac{9}{80\gamma ^2}. \end{aligned}$$
(B15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, M.M., Lu, D.Q. Head-on Collision Between Two Hydroelastic Solitary Waves in Shallow Water. Qual. Theory Dyn. Syst. 17, 103–122 (2018). https://doi.org/10.1007/s12346-017-0263-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-017-0263-y

Keywords

Navigation