Skip to main content
Log in

Bubbles for a Class of Delay Differential Equations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We analyze the effect of increasing mortality in usual delayed recruitment models of the form x′(t) = −δ x(t) + f (x(t − τ)). We consider constant effort harvesting, and discuss the phenomenon of bubbling, which appears when for parameters δ in an interval I there exists a unique positive stationary point K(δ) in the phase space \({C([-\tau,0],\mathbb{R})}\), and there exist δ 1 < δ 2 in I such that K(δ) is locally stable for \({\delta\in I{\setminus}[\delta_1,\delta_2]}\), and K(δ) is unstable for \({\delta\in(\delta_1,\delta_2)}\). We give a definition of bubbling in a more abstract setting, and show that it naturally appears in a variety of equations. For some nonlinearities rigorous proofs are available for the description of bubbles, for other nonlinearities we give numerical results to indicate the phenomenon of bubbling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambika G., Sujatha N.V.: Bubbling and bistability in two parameter discrete systems. Pramana J. Phys. 54, 751–761 (2000)

    Article  Google Scholar 

  2. Anderson C.N.K. et al.: Why fishing magnifies fluctuations in fish abundance. Nature 452, 835–839 (2008)

    Article  Google Scholar 

  3. Bier M., Bountis T.C.: Remerging Feigenbaum trees in dynamical systems. Phys. Lett. A 104, 239–244 (1984)

    Article  MathSciNet  Google Scholar 

  4. Brauer F., Castillo-Chávez C.: Mathematical Models in Population Biology and Epidemiology. Springer, New York (2001)

    MATH  Google Scholar 

  5. Clark C.W.: Mathematical bioeconomics: the optimal management of renewable resources, 2nd edn. Wiley, Hoboken (1990)

    MATH  Google Scholar 

  6. Cooke K., van den Driessche P., Zou X.: Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–352 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dennis B., Desharnais R.A., Cushing J.M., Costantino R.F.: Transitions in population dynamics: equilibria to periodic cycles to aperiodic cycles. J. Anim. Ecol. 66, 704–729 (1997)

    Article  Google Scholar 

  8. Diekmann O., Van Gils S.A., Verduyn Lunel S.M., Walther H.-O.: Delay equations, functional-, complex-, and nonlinear analysis. Applied Mathematical Sciences. Springer, New York (1995)

    MATH  Google Scholar 

  9. Erneux T.: Applied Delay Differential Equations. Springer, New York (2009)

    MATH  Google Scholar 

  10. Foley C., Mackey M.C.: Dynamic hematological disease: a review. J. Math. Biol. 58, 285–322 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Glass L., Mackey M.C.: Pathological conditions resulting from instabilities in physiological control systems. Ann. New York Acad. Sci. 316, 214–235 (1979)

    Article  Google Scholar 

  12. Gurney W.S.C., Blythe S.P., Nisbet R.M.: Nicholson’s blowflies revisited. Nature 287, 17–21 (1980)

    Article  Google Scholar 

  13. Győri I., Trofimchuk S.: Global attractivity in x′(t) = −δ x(t) + pf (x(tτ)). Dyn. Syst. Appl. 8, 197–210 (1999)

    Google Scholar 

  14. Hale J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988)

    MATH  Google Scholar 

  15. Hale J.K., Verduyn Lunel S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  16. an der Heiden U., Mackey M.C.: The dynamics of production and destruction: analytic insight into complex behavior. J. Math. Biol. 16, 75–101 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krisztin, T.: Periodic orbits and the global attractor for delayed monotone negative feedback. Electron. J. Qual. Theory Differ. Equ. (2000). In: Proceedings of the 6th Colloquium on the Qualitative Theory of Differential Equations (Szeged, 1999), vol. 15, pp. 1–12

  18. Krisztin T.: Global dynamics of delay differential equations. Period. Math. Hungar. 56, 83–95 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kuang Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston (1993)

    MATH  Google Scholar 

  20. Liz E., Röst G.: On the global attractor of delay differential equations with unimodal feedback. Discrete Contin. Dyn. Syst. 24, 1215–1224 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liz E., Röst G.: Dichotomy results for delay differential equations with negative Schwarzian derivative. Nonlinear Anal. Real World Appl. 11, 1422–1430 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liz, E., Ruiz-Herrera, A.: The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting. J. Math. Biol. (accepted)

  23. Liz E., Tkachenko V., Trofimchuk S.: A global stability criterion for scalar functional differential equations. SIAM J. Math. Anal. 35, 596–622 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mackey M.C.: Periodic auto-immune hemolytic anemia: an induced dynamical disease. Bull. Math. Biol. 41, 829–834 (1979)

    MathSciNet  MATH  Google Scholar 

  25. Mackey M.C., Glass L.: Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977)

    Article  Google Scholar 

  26. Mackey M.C., Milton J.G.: Dynamical diseases. Ann. N. Y. Acad. Sci. 504, 16–32 (1987)

    Article  Google Scholar 

  27. Mallet-Paret J., Nussbaum R.: Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation. Ann. Mat. Pura Appl. 145, 33–128 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mallet-Paret J., Sell G.R.: The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay. J. Differ. Equ. 125, 441–489 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mallet-Paret, J., Walther, H.-O.: Rapid oscillations are rare in scalar systems governed by monotone negative feedback with a time delay. Preprint (1994)

  30. May, R. M.: Mathematical models in whaling and fisheries management. In: Some Mathematical Questions in Biology (Proc. 14th Sympos., San Francisco, Calif., 1980), pp. 1–64. Lectures Math. Life Sci., vol. 13. Amer. Math. Soc., Providence

  31. May R.M.: Nonlinear phenomena in ecology and epidemiology. Ann. N. Y. Acad. Sci. 357, 267–281 (1980)

    Article  Google Scholar 

  32. May R.M., Beddington J.R., Horwood J.W., Shepherd J.G.: Exploiting natural populations in an uncertain world. Math. Biosci 42, 219–252 (1978)

    Article  MathSciNet  Google Scholar 

  33. Nicholson A.J.: An outline of the dynamics of animal populations. Austral. J. Zool. 2, 9–65 (1954)

    Article  Google Scholar 

  34. Nisbet, R.M.: Delay-differential equations for structured populations. In: Structured-Population Models in Marine, Terrestrial, and Freshwater Systems, pp. 89–118. Population and Community Biology Series, vol. 18. Chapman & Hall, New York (1997)

  35. Smith H.L.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Texts in Applied Mathematics, vol. 57. Springer, New York (2011)

    Book  Google Scholar 

  36. Thieme, H.R.: Mathematics in Population Biology. Princeton University Press (2003)

  37. Walther H.-O.: A theorem on the amplitudes of periodic solutions of differential delay equations with applications to bifurcation. J. Differ. Equ. 29, 396–404 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  38. Walther, H.-O.: The 2-dimensional attractor of x′(t) = − μ x(t) + f (x(t−1)). Mem. Am. Math. Soc., vol. 544. American Mathematical Society, Providence (1995)

  39. Wei J., Li M.Y.: Hopf bifurcation analysis in a delayed Nicholson blowflies equation. Nonlinear Anal. 60, 1351–1367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zipkin E.F., Kraft C.E., Cooch E.G., Sullivan P.J.: When can efforts to control nuisance and invasive species backfire. Ecol. Appl. 19, 1585–1595 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Liz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krisztin, T., Liz, E. Bubbles for a Class of Delay Differential Equations. Qual. Theory Dyn. Syst. 10, 169–196 (2011). https://doi.org/10.1007/s12346-011-0055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-011-0055-8

Keywords

Mathematics Subject Classification (2000)

Navigation