Skip to main content
Log in

Narrative Review of Topiramate: Clinical Uses and Pharmacological Considerations

  • Review
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Due to the diverse mechanisms of action of antiseizure drugs, there has been a rise in prescriptions of these drugs for non-epileptic pathologies. One drug that is now being used for a variety of conditions is topiramate. This is a narrative review that used PubMed, Google Scholar, MEDLINE, and ScienceDirect to review literature on the clinical and pharmacologic properties of topiramate. Topiramate is a commonly prescribed second-generation antiseizure drug. The drug works through multiple pathways to prevent seizures. In this regard, topiramate blocks sodium and calcium voltage-gated channels, inhibits glutamate receptors, enhances gamma-aminobutyric acid (GABA) receptors, and inhibits carbonic anhydrase. Topiramate is approved by the Food and Drug Administration (FDA) for epilepsy treatment and migraine prophylaxis. Topiramate in combination with phentermine is also FDA-approved for weight loss in patients with a body mass index (BMI) > 30. The current target dosing for topiramate monotherapy is 400 mg/day and 100 mg/day to treat epilepsy and migraines, respectively. Commonly reported side effects include paresthesia, confusion, fatigue, dizziness, and change in taste. More uncommon and serious adverse effects can include acute glaucoma, metabolic acidosis, nephrolithiasis, hepatotoxicity, and teratogenicity. Related to a broad side effect profile, physicians prescribing this drug should routinely monitor for side effects and/or toxicity. The present investigation reviews various anti-seizure medications before summarizing indications of topiramate, off-label uses, pharmacodynamics, pharmacokinetics, adverse effects, and drug-drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zack MM. National and state estimates of the numbers of adults and children with active epilepsy—United States, 2015. MMWR Morb Mortal Wkly Rep [Internet]. 2017;66. Available from: https://www.cdc.gov/mmwr/volumes/66/wr/mm6631a1.htm. Cited 12 Apr 2023.

  2. Moura LMVR, Karakis I, Zack MM, Tian N, Kobau R, Howard D. Drivers of US health care spending for persons with seizures and/or epilepsies, 2010–2018. Epilepsia. 2022;63(8):2144–54.

    Article  PubMed  Google Scholar 

  3. Hakami T. Neuropharmacology of antiseizure drugs. Neuropsychopharmacol Rep. 2021;41(3):336–51.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kwan P, Brodie MJ. Drug treatment of epilepsy: when does it fail and how to optimize its use? CNS Spectr. 2004;9(2):110–9.

    Article  PubMed  Google Scholar 

  5. Mattson RH, Cramer JA, Collins JF, Smith DB, Delgado-Escueta AV, Browne TR, et al. Comparison of carbamazepine, phenobarbital, phenytoin, and primidone in partial and secondarily generalized tonic-clonic seizures. N Engl J Med. 1985;313(3):145–51.

    Article  CAS  PubMed  Google Scholar 

  6. Kanner AM, Ashman E, Gloss D, Harden C, Bourgeois B, Bautista JF, et al. Practice guideline update summary: efficacy and tolerability of the new antiepileptic drugs II: treatment-resistant epilepsy: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2018;91(2):82–90.

    Article  CAS  PubMed  Google Scholar 

  7. Hochbaum M, Kienitz R, Rosenow F, Schulz J, Habermehl L, Langenbruch L, et al. Trends in antiseizure medication prescription patterns among all adults, women, and older adults with epilepsy: a German longitudinal analysis from 2008 to 2020. Epilepsy Behav. 2022;1(130): 108666.

    Article  Google Scholar 

  8. Johannessen Landmark C, Larsson PG, Rytter E, Johannessen SI. Antiepileptic drugs in epilepsy and other disorders–a population-based study of prescriptions. Epilepsy Res. 2009;87(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  9. Leong C, Mamdani MM, Gomes T, Juurlink DN, Macdonald EM, Yogendran M. Antiepileptic use for epilepsy and nonepilepsy disorders. Neurology. 2016;86(10):939–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Subbarao BS, Silverman A, Eapen BC. Seizure Medications. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Available from: http://www.ncbi.nlm.nih.gov/books/NBK482269/. Cited 17 Apr 2023.

  11. Hamed SA. Antiepileptic drugs influences on body weight in people with epilepsy. Expert Rev Clin Pharmacol. 2015;8(1):103–14.

    Article  PubMed  Google Scholar 

  12. Perucca P, Carter J, Vahle V, Gilliam FG. Adverse antiepileptic drug effects. Neurology. 2009;72(14):1223–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ayalew MB, Muche EA. Patient reported adverse events among epileptic patients taking antiepileptic drugs. SAGE Open Med. 2018;4(6):2050312118772471.

    Google Scholar 

  14. FDA topiramate PDF [Internet]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020844s041lbl.pdf. Cited 19 Mar 2023.

  15. Fariba KA, Saadabadi A. Topiramate. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. Available from: http://www.ncbi.nlm.nih.gov/books/NBK554530/. Cited 19 Mar 2023.

  16. Faught E. Topiramate in the treatment of partial and generalized epilepsy. Neuropsychiatr Dis Treat. 2007;3(6):811–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Aronne LJ, Wadden TA, Peterson C, Winslow D, Odeh S, Gadde KM. Evaluation of phentermine and topiramate versus phentermine/topiramate extended-release in obese adults. Obesity. 2013;21(11):2163–71.

    Article  CAS  PubMed  Google Scholar 

  18. Dosing Information | Qsymia® (Phentermine and Topiramate extended-release capsules) CIV [Internet]. Available from: https://qsymia.com/patient/resources/taking-qsymia. Cited 19 Mar 2023.

  19. VIVUS LLC. A phase IV, Multi-center, randomized, double-blind, placebo-controlled, parallel-design study to determine the safety and efficacy of VI-0521 in obese adolescents [Internet]. clinicaltrials.gov; 2022 Aug. Report No.: NCT03922945. Available from: https://clinicaltrials.gov/ct2/show/NCT03922945. Cited 16 Mar 2023.

  20. Kramer CK, Leitão CB, Pinto LC, Canani LH, Azevedo MJ, Gross JL. Efficacy and safety of topiramate on weight loss: a meta-analysis of randomized controlled trials. Obes Rev. 2011;12(5):e338–47.

    Article  CAS  PubMed  Google Scholar 

  21. Shi Q, Wang Y, Hao Q, Vandvik PO, Guyatt G, Li J, et al. Pharmacotherapy for adults with overweight and obesity: a systematic review and network meta-analysis of randomised controlled trials. Lancet Lond Engl. 2022;399(10321):259–69.

    Article  CAS  Google Scholar 

  22. Calderon G, Gonzalez-Izundegui D, Shan KL, Garcia-Valencia OA, Cifuentes L, Campos A, et al. Effectiveness of anti-obesity medications approved for long-term use in a multidisciplinary weight management program: a multi-center clinical experience. Int J Obes. 2022;46(3):555–63.

    Article  CAS  Google Scholar 

  23. Lei XG, Ruan JQ, Lai C, Sun Z, Yang X. Efficacy and safety of phentermine/topiramate in adults with overweight or obesity: a systematic review and meta-analysis. Obes Silver Spring MD. 2021;29(6):985–94.

    Article  CAS  Google Scholar 

  24. Kelly AS, Bensignor MO, Hsia DS, Shoemaker AH, Shih W, Peterson C, et al. Phentermine/topiramate for the treatment of adolescent obesity. NEJM Evid. 2022;1(6):EVIDoa2200014.

    Article  Google Scholar 

  25. Ard JD, Beavers DP, Hale E, Miller G, McNatt S, Fernandez A. Use of phentermine-topiramate extended release in combination with sleeve gastrectomy in patients with BMI 50 kg/m2 or more. Surg Obes Relat Dis. 2019;15(7):1039–43.

    Article  PubMed  Google Scholar 

  26. Elkind-Hirsch KE, Chappell N, Seidemann E, Storment J, Bellanger D. Exenatide, dapagliflozin, or phentermine/topiramate differentially affect metabolic profiles in polycystic ovary syndrome. J Clin Endocrinol Metab. 2021;106(10):3019–33.

    Article  PubMed  Google Scholar 

  27. Arnone D. Review of the use of Topiramate for treatment of psychiatric disorders. Ann Gen Psychiatry. 2005;4(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jankovic J, Jimenez-Shahed J, Brown LW. A randomised, double-blind, placebo-controlled study of topiramate in the treatment of Tourette syndrome. J Neurol Neurosurg Psychiatry. 2010;81(1):70–3.

    Article  CAS  PubMed  Google Scholar 

  29. Shank RP, Gardocki JF, Vaught JL, Davis CB, Schupsky JJ, Raffa RB, et al. Topiramate: preclinical evaluation of structurally novel anticonvulsant. Epilepsia. 1994;35(2):450–60.

    Article  CAS  PubMed  Google Scholar 

  30. Maryanoff BE, Nortey SO, Gardocki JF, Shank RP, Dodgson SP. Anticonvulsant O-alkyl sulfamates. 2,3:4,5-Bis-O-(1-methylethylidene)-beta-d-fructopyranose sulfamate and related compounds. J Med Chem. 1987;30(5):880–7.

    Article  CAS  PubMed  Google Scholar 

  31. Curia G, Aracri P, Sancini G, Mantegazza M, Avanzini G, Franceschetti S. Protein-kinase C-dependent phosphorylation inhibits the effect of the antiepileptic drug topiramate on the persistent fraction of sodium currents. Neuroscience. 2004;127(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  32. McLean MJ, Bukhari AA, Wamil AW. Effects of topiramate on sodium-dependent action-potential firing by mouse spinal cord neurons in cell culture. Epilepsia. 2000;41(S1):21–4.

    Article  CAS  PubMed  Google Scholar 

  33. Shank RP, Gardocki JF, Streeter AJ, Maryanoff BE. An overview of the preclinical aspects of topiramate: pharmacology, pharmacokinetics, and mechanism of action. Epilepsia. 2000;41(S1):3–9.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang X, Velumian AA, Jones OT, Carlen PL. Modulation of high-voltage-activated calcium channels in dentate granule cells by topiramate. Epilepsia. 2000;41(S1):52–60.

    Article  CAS  PubMed  Google Scholar 

  35. McNaughton NCL, Davies CH, Randall A. Inhibition of alpha(1E) Ca(2+) channels by carbonic anhydrase inhibitors. J Pharmacol Sci. 2004;95(2):240–7.

    Article  CAS  PubMed  Google Scholar 

  36. Russo E, Constanti A. Topiramate hyperpolarizes and modulates the slow poststimulus AHP of rat olfactory cortical neurones in vitro. Br J Pharmacol. 2004;141(2):285–301.

    Article  CAS  PubMed  Google Scholar 

  37. Kuzmiski JB, Barr W, Zamponi GW, MacVicar BA. Topiramate inhibits the initiation of plateau potentials in CA1 neurons by depressing R-type calcium channels. Epilepsia. 2005;46(4):481–9.

    Article  CAS  PubMed  Google Scholar 

  38. Gibbs JW, Sombati S, DeLorenzo RJ, Coulter DA. Cellular actions of topiramate: blockade of kainate-evoked inward currents in cultured hippocampal neurons. Epilepsia. 2000;41(S1):10–6.

    Article  PubMed  Google Scholar 

  39. Angehagen M, Ben-Menachem E, Shank R, Rönnbäck L, Hansson E. Topiramate modulation of kainate-induced calcium currents is inversely related to channel phosphorylation level. J Neurochem. 2004;88(2):320–5.

    Article  PubMed  Google Scholar 

  40. Angehagen M, Rönnbäck L, Hansson E, Ben-Menachem E. Topiramate reduces AMPA-induced Ca(2+) transients and inhibits GluR1 subunit phosphorylation in astrocytes from primary cultures. J Neurochem. 2005;94(4):1124–30.

    Article  PubMed  Google Scholar 

  41. White HS, Brown SD, Woodhead JH, Skeen GA, Wolf HH. Topiramate enhances GABA-mediated chloride flux and GABA-evoked chloride currents in murine brain neurons and increases seizure threshold. Epilepsy Res. 1997;28(3):167–79.

    Article  CAS  PubMed  Google Scholar 

  42. Herrero AI, Del Olmo N, González-Escalada JR, Solís JM. Two new actions of topiramate: inhibition of depolarizing GABA(A)-mediated responses and activation of a potassium conductance. Neuropharmacology. 2002;42(2):210–20.

    Article  CAS  PubMed  Google Scholar 

  43. White HS, Brown SD, Woodhead JH, Skeen GA, Wolf HH. Topiramate modulates GABA-evoked currents in murine cortical neurons by a nonbenzodiazepine mechanism. Epilepsia. 2000;41(S1):17–20.

    Article  CAS  PubMed  Google Scholar 

  44. Gordey M, DeLorey TM, Olsen RW. Differential sensitivity of recombinant GABA(A) receptors expressed in Xenopus oocytes to modulation by topiramate. Epilepsia. 2000;41(S1):25–9.

    Article  CAS  PubMed  Google Scholar 

  45. Staley K, Smith R. A new form of feedback at the GABA(A) receptor. Nat Neurosci. 2001;4(7):674–6.

    Article  CAS  PubMed  Google Scholar 

  46. Sun MK, Nelson TJ, Alkon DL. Functional switching of GABAergic synapses by ryanodine receptor activation. Proc Natl Acad Sci U S A. 2000;97(22):12300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Uusisaari M, Smirnov S, Voipio J, Kaila K. Spontaneous epileptiform activity mediated by GABA(A) receptors and gap junctions in the rat hippocampal slice following long-term exposure to GABA(B) antagonists. Neuropharmacology. 2002;43(4):563–72.

    Article  CAS  PubMed  Google Scholar 

  48. Simeone TA, Wilcox KS, White HS. Subunit selectivity of topiramate modulation of heteromeric GABA(A) receptors. Neuropharmacology. 2006;50(7):845–57.

    Article  CAS  PubMed  Google Scholar 

  49. Millichap JG, Woodbury DM, Goodman LS. Mechanism of the anticonvulsant action of acetazoleamide, a carbonic anhydrase inhibitor. J Pharmacol Exp Ther. 1955;115(3):251–8.

    CAS  PubMed  Google Scholar 

  50. Maren TH. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967;47(4):595–781.

    Article  CAS  PubMed  Google Scholar 

  51. Anderson RE, Chiu P, Woodbury DM. Mechanisms of tolerance to the anticonvulsant effects of acetazolamide in mice: relation to the activity and amount of carbonic anhydrase in brain. Epilepsia. 1989;30(2):208–16.

    Article  CAS  PubMed  Google Scholar 

  52. Goadsby PJ, Lipton RB, Ferrari MD. Migraine–current understanding and treatment. N Engl J Med. 2002;346(4):257–70.

    Article  CAS  PubMed  Google Scholar 

  53. Shields KG, Storer RJ, Akerman S, Goadsby PJ. Calcium channels modulate nociceptive transmission in the trigeminal nucleus of the cat. Neuroscience. 2005;135(1):203–12.

    Article  CAS  PubMed  Google Scholar 

  54. Calabresi P, Galletti F, Rossi C, Sarchielli P, Cupini LM. Antiepileptic drugs in migraine: from clinical aspects to cellular mechanisms. Trends Pharmacol Sci. 2007;28(4):188–95.

    Article  CAS  PubMed  Google Scholar 

  55. D’Amico D. Antiepileptic drugs in the prophylaxis of migraine, chronic headache forms and cluster headache: a review of their efficacy and tolerability. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol. 2007;28(Suppl 2):S188-197.

    Google Scholar 

  56. Sanchez-Del-Rio M, Reuter U, Moskowitz MA. New insights into migraine pathophysiology. Curr Opin Neurol. 2006;19(3):294–8.

    Article  CAS  PubMed  Google Scholar 

  57. Vikelis M, Mitsikostas DD. The role of glutamate and its receptors in migraine. CNS Neurol Disord Drug Targets. 2007;6(4):251–7.

    Article  CAS  PubMed  Google Scholar 

  58. Dodick DW. Migraine. Lancet Lond Engl. 2018;391(10127):1315–30.

    Article  Google Scholar 

  59. Lynch CJ, Fox H, Hazen SA, Stanley BA, Dodgson S, Lanoue KF. Role of hepatic carbonic anhydrase in de novo lipogenesis. Biochem J. 1995;310(Pt 1):197–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Richard D, Ferland J, Lalonde J, Samson P, Deshaies Y. Influence of topiramate in the regulation of energy balance. Nutr Burbank Los Angel Cty Calif. 2000;16(10):961–6.

    Article  CAS  Google Scholar 

  61. York DA, Singer L, Thomas S, Bray GA. Effect of topiramate on body weight and body composition of osborne-mendel rats fed a high-fat diet: alterations in hormones, neuropeptide, and uncoupling-protein mRNAs. Nutr Burbank Los Angel Cty Calif. 2000;16(10):967–75.

    Article  CAS  Google Scholar 

  62. Lalonde J, Samson P, Poulin S, Deshaies Y, Richard D. Additive effects of leptin and topiramate in reducing fat deposition in lean and obese ob/ob mice. Physiol Behav. 2004;80(4):415–20.

    Article  CAS  PubMed  Google Scholar 

  63. Shank RP, Maryanoff BE. Molecular pharmacodynamics, clinical therapeutics, and pharmacokinetics of topiramate. CNS Neurosci Ther. 2008;14(2):120–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Manitpisitkul P, Curtin CR, Shalayda K, Wang SS, Ford L, Heald DL. Pharmacokinetics of topiramate in patients with renal impairment, end-stage renal disease undergoing hemodialysis, or hepatic impairment. Epilepsy Res. 2014;108(5):891–901.

    Article  CAS  PubMed  Google Scholar 

  65. Oskoui M, Pringsheim T, Holler-Managan Y, Potrebic S, Billinghurst L, Gloss D, et al. Practice guideline update summary: acute treatment of migraine in children and adolescents: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology. 2019;93(11):487–99.

    Article  PubMed  Google Scholar 

  66. Sommer BR, Mitchell EL, Wroolie TE. Topiramate: effects on cognition in patients with epilepsy, migraine headache and obesity. Ther Adv Neurol Disord. 2013;6(4):211–27.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mechrgui M, Kanani S. The ophthalmic side effects of topiramate: a review. Cureus. 2022;14(8): e28513.

    PubMed  PubMed Central  Google Scholar 

  68. Joshi S, Tepper SJ, Lucas S, Rasmussen S, Nelson R. A narrative review of the importance of pharmacokinetics and drug–drug interactions of preventive therapies in migraine management. Headache. 2021;61(6):838–53.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vega D, Maalouf NM, Sakhaee K. Increased propensity for calcium phosphate kidney stones with topiramate use. Expert Opin Drug Saf. 2007;6(5):547–57.

    Article  CAS  PubMed  Google Scholar 

  70. Salek T, Andel I, Kurfurstova I. Topiramate induced metabolic acidosis and kidney stones—a case study. Biochem Medica. 2017;27(2):404–10.

    Article  Google Scholar 

  71. Margulis AV, Mitchell AA, Gilboa SM, Werler MM, Mittleman MA, Glynn RJ, et al. Use of topiramate in pregnancy and risk of oral clefts. Am J Obstet Gynecol. 2012;207(5):405.e1-7.

    Article  CAS  PubMed  Google Scholar 

  72. Campbell E, Devenney E, Morrow J, Russell A, Smithson WH, Parsons L, et al. Recurrence risk of congenital malformations in infants exposed to antiepileptic drugs in utero. Epilepsia. 2013;54(1):165–71.

    Article  CAS  PubMed  Google Scholar 

  73. Hernandez-Diaz S, Huybrechts KF, Desai RJ, Cohen JM, Mogun H, Pennell PB, et al. Topiramate use early in pregnancy and the risk of oral clefts: a pregnancy cohort study. Neurology. 2018;90(4):e342–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Arif H, Buchsbaum R, Weintraub D, Pierro J, Resor SR, Hirsch LJ. Patient-reported cognitive side effects of antiepileptic drugs: predictors and comparison of all commonly used antiepileptic drugs. Epilepsy Behav EB. 2009;14(1):202–9.

    Article  Google Scholar 

  75. Marino SE, Meador KJ, Loring DW, Okun MS, Fernandez HH, Fessler AJ, et al. Subjective perception of cognition is related to mood and not performance. Epilepsy Behav EB. 2009;14(3):459–64.

    Article  CAS  Google Scholar 

  76. Lee HW, Jung DK, Suh CK, Kwon SH, Park SP. Cognitive effects of low-dose topiramate monotherapy in epilepsy patients: a 1-year follow-up. Epilepsy Behav EB. 2006;8(4):736–41.

    Article  Google Scholar 

  77. Blum D, Meador K, Biton V, Fakhoury T, Shneker B, Chung S, et al. Cognitive effects of lamotrigine compared with topiramate in patients with epilepsy. Neurology. 2006;67(3):400–6.

    Article  CAS  PubMed  Google Scholar 

  78. Mills KC, Drazkowski JF, Hammer AE, Caldwell PT, Kustra RP, Blum DE. Relative influences of adjunctive topiramate and adjunctive lamotrigine on scanning and the effective field of view. Epilepsy Res. 2008;78(2–3):140–6.

    Article  CAS  PubMed  Google Scholar 

  79. Aldenkamp AP, Baker G, Mulder OG, Chadwick D, Cooper P, Doelman J, et al. A multicenter, randomized clinical study to evaluate the effect on cognitive function of topiramate compared with valproate as add-on therapy to carbamazepine in patients with partial-onset seizures. Epilepsia. 2000;41(9):1167–78.

    Article  CAS  PubMed  Google Scholar 

  80. Meador KJ, Loring DW, Hulihan JF, Kamin M, Karim R, CAPSS-027 Study Group. Differential cognitive and behavioral effects of topiramate and valproate. Neurology. 2003;60(9):1483–8.

    Article  CAS  PubMed  Google Scholar 

  81. Lee S, Sziklas V, Andermann F, Farnham S, Risse G, Gustafson M, et al. The effects of adjunctive topiramate on cognitive function in patients with epilepsy. Epilepsia. 2003;44(3):339–47.

    Article  CAS  PubMed  Google Scholar 

  82. Kim SY, Lee HW, Jung DK, Suh CK, Park SP. Cognitive effects of low-dose topiramate compared with oxcarbazepine in epilepsy patients. J Clin Neurol Seoul Korea. 2006;2(2):126–33.

    Article  Google Scholar 

  83. Gomer B, Wagner K, Frings L, Saar J, Carius A, Härle M, et al. The influence of antiepileptic drugs on cognition: a comparison of levetiracetam with topiramate. Epilepsy Behav EB. 2007;10(3):486–94.

    Article  Google Scholar 

  84. Brandes JL. Practical use of topiramate for migraine prevention. Headache. 2005;45(Suppl 1):S66-73.

    Article  PubMed  Google Scholar 

  85. Brandes JL, Saper JR, Diamond M, Couch JR, Lewis DW, Schmitt J, et al. Topiramate for migraine prevention: a randomized controlled trial. JAMA. 2004;291(8):965–73.

    Article  CAS  PubMed  Google Scholar 

  86. Diener HC, Tfelt-Hansen P, Dahlöf C, Láinez MJA, Sandrini G, Wang SJ, et al. Topiramate in migraine prophylaxis–results from a placebo-controlled trial with propranolol as an active control. J Neurol. 2004;251(8):943–50.

    CAS  PubMed  Google Scholar 

  87. Silberstein SD, Neto W, Schmitt J, Jacobs D, MIGR-001 Study Group. Topiramate in migraine prevention: results of a large controlled trial. Arch Neurol. 2004;61(4):490–5.

    Article  PubMed  Google Scholar 

  88. Kececi H, Atakay S. Effects of topiramate on neurophysiological and neuropsychological tests in migraine patients. J Clin Neurosci. 2009;16(12):1588–91.

    Article  CAS  PubMed  Google Scholar 

  89. Bray GA, Hollander P, Klein S, Kushner R, Levy B, Fitchet M, et al. A 6-month randomized, placebo-controlled, dose-ranging trial of topiramate for weight loss in obesity. Obes Res. 2003;11(6):722–33.

    Article  CAS  PubMed  Google Scholar 

  90. Wilding J, Van Gaal L, Rissanen A, Vercruysse F, Fitchet M, OBES-002 Study Group. A randomized double-blind placebo-controlled study of the long-term efficacy and safety of topiramate in the treatment of obese subjects. Int J Obes. 2004;28(11):1399–410.

    Article  CAS  Google Scholar 

  91. Maalouf NM, Langston JP, Van Ness PC, Moe OW, Sakhaee K. Nephrolithiasis in topiramate users. Urol Res. 2011;39(4):303–7.

    Article  CAS  PubMed  Google Scholar 

  92. Rosenfeld WE, Doose DR, Walker SA, Nayak RK. Effect of topiramate on the pharmacokinetics of an oral contraceptive containing norethindrone and ethinyl estradiol in patients with epilepsy. Epilepsia. 1997;38(3):317–23.

    Article  CAS  PubMed  Google Scholar 

  93. Sarayani A, Winterstein A, Cristofoletti R, Vozmediano V, Schmidt S, Brown J. Real-world effect of a potential drug-drug interaction between topiramate and oral contraceptives on unintended pregnancy outcomes. Contraception. 2023;120: 109953.

    Article  CAS  PubMed  Google Scholar 

  94. Stage TB, Brøsen K, Christensen MMH. A comprehensive review of drug-drug interactions with metformin. Clin Pharmacokinet. 2015;54(8):811–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding

No funding or sponsorship was received for this study or publication of this article.

Medical Writing and Editorial Assistance

The authors did not receive any medical writing or editorial assistance for this article.

Author Contributions

Study concept and design: Nathan Z. Pearl, Caroline P. Babin, Nicole T. Catalano, James C. Blake, Shahab Ahmadzadeh, Sahar Shekoohi, Alan D. Kaye. Analysis and interpretation of data: Nathan Z. Pearl, Caroline P. Babin, Nicole T. Catalano, James C. Blake, Shahab Ahmadzadeh, Sahar Shekoohi, Alan D. Kaye. Drafting of the manuscript: Nathan Z. Pearl, Caroline P. Babin, Nicole T. Catalano, James C. Blake, Shahab Ahmadzadeh, Sahar Shekoohi, Alan D. Kaye. critical revision of the manuscript for important intellectual content: Nathan Z. Pearl, Caroline P. Babin, Nicole T. Catalano, James C. Blake, Shahab Ahmadzadeh, Sahar Shekoohi, Alan D. Kaye. statistical analysis: Nathan Z. Pearl, Caroline P. Babin, Nicole T. Catalano, James C. Blake, Shahab Ahmadzadeh, Sahar Shekoohi, Alan D. Kaye.

Disclosures

Nathan Z. Pearl has nothing to disclose. Caroline P. Babin has nothing to disclose. Nicole T. Catalano has nothing to disclose. James C. Blake has nothing to disclose. Shahab Ahmadzadeh has nothing to disclose. Sahar Shekoohi has nothing to disclose. Alan D. Kaye has nothing to disclose.

Compliance with Ethics Guidelines

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Shekoohi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pearl, N.Z., Babin, C.P., Catalano, N.T. et al. Narrative Review of Topiramate: Clinical Uses and Pharmacological Considerations. Adv Ther 40, 3626–3638 (2023). https://doi.org/10.1007/s12325-023-02586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-023-02586-y

Keywords

Navigation