Skip to main content
Log in

Sex-Related Differences in Pharmacokinetics and Pharmacodynamics of Frequently Prescribed Drugs: A Review of the Literature

  • Review
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

While there is considerable evidence about sex-related differences between men and women in drug metabolism, efficacy and safety of frequently prescribed drugs such as analgesics, tranquillizers, statins and beta-blockers, clinicians’ awareness of the implications on dosing and adverse event monitoring in routine practice is inadequate. Some drugs are more effective in men than women (e.g. ibuprofen) or vice versa (e.g. opioids, benzodiazepine), typically owing to pharmacodynamic causes. The 5-hydroxytryptamine (5-HT) receptor 3 antagonist alosetron is approved for women only since it largely lacks efficacy in men. For statins, equal efficacy was demonstrated in secondary prevention of cardiovascular events, but primary prevention is still under debate. For some drugs (e.g. paracetamol, metoprolol), women are at significantly higher risk of adverse effects. Therefore, considering sex-specific features in clinical trials and therapeutic guidelines is warranted to ensure efficacy and safety of medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho DH, Choi J, Kim MN, et al. Gender differences in the presentation of chest pain in obstructive coronary artery disease: results from the Korean Women’s Chest Pain Registry. Korean J Intern Med. 2019. https://doi.org/10.3904/kjim.2018.320.

  2. Redberg RF. Coronary artery disease in women: understanding the diagnostic and management pitfalls. Medscape Womens Health. 1998;3(5):1.

    CAS  PubMed  Google Scholar 

  3. Jespersen L, Hvelplund A, Abildstrom SZ, et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J. 2012;33(6):734–44.

    PubMed  Google Scholar 

  4. Garcia M, Mulvagh SL, Merz CN, et al. Cardiovascular disease in women: clinical perspectives. Circ Res. 2016;118(8):1273–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vaccarino V, Badimon L, Corti R, et al. Presentation, management, and outcomes of ischaemic heart disease in women. Nat Rev Cardiol. 2013;10(9):508–18.

    PubMed  Google Scholar 

  6. Taqueti VR, Shaw LJ, Cook NR, et al. Excess cardiovascular risk in women relative to men referred for coronary angiography is associated with severely impaired coronary flow reserve, not obstructive disease. Circulation. 2017;135(6):566–77.

    PubMed  Google Scholar 

  7. Donovan MD. Sex and racial differences in pharmacological response: effect of route of administration and drug delivery system on pharmacokinetics. J Womens Health (Larchmt). 2005;14(1):30–7.

    Google Scholar 

  8. Dressman JB, Berardi RR, Dermentzoglou LC, et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res. 1990;7(7):756–61.

    CAS  PubMed  Google Scholar 

  9. Lindahl A, Ungell AL, Knutson L, et al. Characterization of fluids from the stomach and proximal jejunum in men and women. Pharm Res. 1997;14(4):497–502.

    CAS  PubMed  Google Scholar 

  10. Sadik R, Abrahamsson H, Stotzer PO. Gender differences in gut transit shown with a newly developed radiological procedure. Scand J Gastroenterol. 2003;38(1):36–42.

    CAS  PubMed  Google Scholar 

  11. Gandhi M, Aweeka F, Greenblatt RM, et al. Sex differences in pharmacokinetics and pharmacodynamics. Annu Rev Pharmacol Toxicol. 2004;44:499–523.

    CAS  PubMed  Google Scholar 

  12. Soldin OP, Mattison DR. Sex differences in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2009;48(3):143–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Barroso AT, Martín EM, Romero LMR, et al. Factors affecting lung function: a review of the literature. Arch Bronconeumol. 2018;54(6):327–32.

    Google Scholar 

  14. Schwartz JB. The influence of sex on pharmacokinetics. Clin Pharmacokinet. 2003;42(2):107–21.

    CAS  PubMed  Google Scholar 

  15. Chen ML, Lee SC, Ng MJ, et al. Pharmacokinetic analysis of bioequivalence trials: implications for sex-related issues in clinical pharmacology and biopharmaceutics. Clin Pharmacol Ther. 2000;68(5):510–21.

    CAS  PubMed  Google Scholar 

  16. Morris ME, Lee HJ, Predko LM. Gender differences in the membrane transport of endogenous and exogenous compounds. Pharmacol Rev. 2003;55(2):229–40.

    CAS  PubMed  Google Scholar 

  17. Thurmann PA, Hompesch BC. Influence of gender on the pharmacokinetics and pharmacodynamics of drugs. Int J Clin Pharmacol Ther. 1998;36(11):586–90.

    CAS  PubMed  Google Scholar 

  18. Fleisch J, Fleisch MC, Thurmann PA. Women in early-phase clinical drug trials: have things changed over the past 20 years? Clin Pharmacol Ther. 2005;78(5):445–52.

    PubMed  Google Scholar 

  19. Mullner M, Vamvakas S, Rietschel M, et al. Are women appropriately represented and assessed in clinical trials submitted for marketing authorization? A review of the database of the European Medicines Agency. Int J Clin Pharmacol Ther. 2007;45(9):477–84.

    CAS  PubMed  Google Scholar 

  20. Romano S, Buccheri S, Mehran R, et al. Gender differences on benefits and risks associated with oral antithrombotic medications for coronary artery disease. Expert Opin Drug Saf. 2018;17(10):1041–52.

    CAS  PubMed  Google Scholar 

  21. Fornasier G, Francescon S, Leone R, et al. An historical overview over pharmacovigilance. Int J Clin Pharm. 2018;40(4):744–7.

    PubMed  PubMed Central  Google Scholar 

  22. Wermeling DP, Selwitz AS. Current issues surrounding women and minorities in drug trials. Ann Pharmacother. 1993;27(7–8):904–11.

    CAS  PubMed  Google Scholar 

  23. U.S. Food and Drug Administration. General considerations for the clinical evaluation of drugs. 1977. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-considerations-clinical-evaluation-drugs.

  24. Food US, Drug A. Guideline for the study and evaluation of gender differences in the clinical evaluation of drugs; notice. Fed Regist. 1993;58(139):39406–16.

    Google Scholar 

  25. Klinge I. Gender perspectives in European research. Pharmacol Res. 2008;58(3–4):183–9.

    PubMed  Google Scholar 

  26. Simpson M, McNulty J. Different needs: women’s drug use and treatment in the UK. Int J Drug Policy. 2008;19(2):169–75.

    PubMed  Google Scholar 

  27. Franconi F, Campesi I. Pharmacogenomics, pharmacokinetics and pharmacodynamics: interaction with biological differences between men and women. Br J Pharmacol. 2014;171(3):580–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Koren G. Sex dependent pharmacokinetics and bioequivalence—time for a change. J Popul Ther Clin Pharmacol. 2013;20(3):e358–61.

    PubMed  Google Scholar 

  29. Harris RZ, Benet LZ, Schwartz JB. Gender effects in pharmacokinetics and pharmacodynamics. Drugs. 1995;50(2):222–39.

    CAS  PubMed  Google Scholar 

  30. Tanaka E. Gender-related differences in pharmacokinetics and their clinical significance. J Clin Pharm Ther. 1999;24(5):339–46.

    CAS  PubMed  Google Scholar 

  31. Xie CX, Piecoro LT, Wermeling DP. Gender-related considerations in clinical pharmacology and drug therapeutics. Crit Care Nurs Clin North Am. 1997;9(4):459–68.

    CAS  PubMed  Google Scholar 

  32. Ando Y, Shimokata T, Yasuda Y, et al. Carboplatin dosing for adult Japanese patients. Nagoya J Med Sci. 2014;76(1–2):1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schwartz JB. Gender-specific implications for cardiovascular medication use in the elderly optimizing therapy for older women. Cardiol Rev. 2003;11(5):275–98.

    PubMed  Google Scholar 

  34. Scandlyn MJ, Stuart EC, Rosengren RJ. Sex-specific differences in CYP450 isoforms in humans. Expert Opin Drug Metab Toxicol. 2008;4(4):413–24.

    CAS  PubMed  Google Scholar 

  35. Zanger UM, Klein K, Richter T, et al. Impact of genetic polymorphism in relation to other factors on expression and function of human drug-metabolizing P450s. Toxicol Mech Methods. 2005;15(2):121–4.

    CAS  PubMed  Google Scholar 

  36. Gleiter CH, Gundert-Remy U. Gender differences in pharmacokinetics. Eur J Drug Metab Pharmacokinet. 1996;21(2):123–8.

    CAS  PubMed  Google Scholar 

  37. Wolbold R, Klein K, Burk O, et al. Sex is a major determinant of CYP3A4 expression in human liver. Hepatology. 2003;38(4):978–88.

    CAS  PubMed  Google Scholar 

  38. Franconi F, Campesi I, Colombo D, et al. Sex-gender variable: methodological recommendations for increasing scientific value of clinical studies. Cells. 2019;8(5).

    PubMed Central  Google Scholar 

  39. Gartlehner G, Chapman A, Strobelberger M, et al. Differences in efficacy and safety of pharmaceutical treatments between men and women: an umbrella review. PLoS One. 2010;5(7):e11895.

    PubMed  PubMed Central  Google Scholar 

  40. Cook CS, Zhang L, Ames GB, et al. Single- and repeated-dose pharmacokinetics of eplerenone, a selective aldosterone receptor blocker, in rats. Xenobiotica. 2003;33(3):305–21.

    CAS  PubMed  Google Scholar 

  41. Kanashiro-Takeuchi RM, Heidecker B, Lamirault G, et al. Sex-specific impact of aldosterone receptor antagonism on ventricular remodeling and gene expression after myocardial infarction. Clin Transl Sci. 2009;2(2):134–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Walker JS, Carmody JJ. Experimental pain in healthy human subjects: gender differences in nociception and in response to ibuprofen. Anesth Analg. 1998;86(6):1257–62.

    CAS  PubMed  Google Scholar 

  43. Fillingim RB. Sex, gender, and pain. In: Legato MJ, editor. Principles of gender-specific medicine, gender in the genomic era. 3rd ed. London: Academic; 2017. p. 481–96.

    Google Scholar 

  44. Ryan JL, Jureidini B, Hodges JS, et al. Gender differences in analgesia for endodontic pain. J Endod. 2008;34(5):552–6.

    PubMed  Google Scholar 

  45. Riley JL 3rd, Robinson ME, Wise EA, et al. Sex differences in the perception of noxious experimental stimuli: a meta-analysis. Pain. 1998;74(2–3):181–7.

    PubMed  Google Scholar 

  46. Paller CJ, Campbell CM, Edwards RR, et al. Sex-based differences in pain perception and treatment. Pain Med. 2009;10(2):289–99.

    PubMed  PubMed Central  Google Scholar 

  47. Craft RM, Mogil JS, Aloisi AM. Sex differences in pain and analgesia: the role of gonadal hormones. Eur J Pain. 2004;8(5):397–411.

    CAS  PubMed  Google Scholar 

  48. Bartley EJ, Fillingim RB. Sex differences in pain: a brief review of clinical and experimental findings. Br J Anaesth. 2013;111(1):52–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mazure CM, Fiellin DA. Women and opioids: something different is happening here. Lancet. 2018;392(10141):9–11.

    PubMed  Google Scholar 

  50. Kest B, Sarton E, Dahan A. Gender differences in opioid-mediated analgesia: animal and human studies. Anesthesiology. 2000;93(2):539–47.

    CAS  PubMed  Google Scholar 

  51. Chartoff EH, Mavrikaki M. Sex differences in kappa opioid receptor function and their potential impact on addiction. Front Neurosci. 2015;9:466.

    PubMed  PubMed Central  Google Scholar 

  52. Lee WM, Squires RH Jr, Nyberg SL, et al. Acute liver failure: summary of a workshop. Hepatology. 2008;47(4):1401–15.

    PubMed  PubMed Central  Google Scholar 

  53. Wei G, Bergquist A, Broome U, et al. Acute liver failure in Sweden: etiology and outcome. J Intern Med. 2007;262(3):393–401.

    CAS  PubMed  Google Scholar 

  54. Johnson BP, Walisser JA, Liu Y, et al. Hepatocyte circadian clock controls acetaminophen bioactivation through NADPH-cytochrome P450 oxidoreductase. Proc Natl Acad Sci USA. 2014;111(52):18757–62.

    CAS  PubMed  Google Scholar 

  55. Schnell RC, Bozigian HP, Davies MH, et al. Circadian rhythm in acetaminophen toxicity: role of nonprotein sulfhydryls. Toxicol Appl Pharmacol. 1983;71(3):353–61.

    CAS  PubMed  Google Scholar 

  56. Howell SR, Klaassen C. Circadian variation of hepatic UDP-glucuronic acid and the glucuronidation of xenobiotics in mice. Toxicol Lett. 1991;57(1):73–9.

    CAS  PubMed  Google Scholar 

  57. Vogt BL, Richie JP Jr. Fasting-induced depletion of glutathione in the aging mouse. Biochem Pharmacol. 1993;46(2):257–63.

    CAS  PubMed  Google Scholar 

  58. Matsunaga N, Nakamura N, Yoneda N, et al. Influence of feeding schedule on 24-h rhythm of hepatotoxicity induced by acetaminophen in mice. J Pharmacol Exp Ther. 2004;311(2):594–600.

    CAS  PubMed  Google Scholar 

  59. Tsuchiya Y, Sakai H, Hirata A, et al. Effects of food restriction on the expression of genes related to acetaminophen-induced liver toxicity in rats. J Toxicol Pathol. 2018;31(4):267–74.

    PubMed  PubMed Central  Google Scholar 

  60. Moore RA, Derry S, Wiffen PJ, et al. Effects of food on pharmacokinetics of immediate release oral formulations of aspirin, dipyrone, paracetamol and NSAIDs - a systematic review. Br J Clin Pharmacol. 2015;80(3):381–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Miners JO, Attwood J, Birkett DJ. Influence of sex and oral contraceptive steroids on paracetamol metabolism. Br J Clin Pharmacol. 1983;16(5):503–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rubin JB, Hameed B, Gottfried M, et al. Acetaminophen-induced acute liver failure is more common and more severe in women. Clin Gastroenterol Hepatol. 2018;16(6):936–46.

    CAS  PubMed  Google Scholar 

  63. Kazouini A, Mohammed BS, Simpson CR, et al. Paracetamol prescribing in primary care: too little and too much? Br J Clin Pharmacol. 2011;72(3):500–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Manson JE, Grobbee DE, Stampfer MJ, et al. Aspirin in the primary prevention of angina pectoris in a randomized trial of United States physicians. Am J Med. 1990;89(6):772–6.

    CAS  PubMed  Google Scholar 

  65. Regitz-Zagrosek V. Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat Rev Drug Discov. 2006;5(5):425–38.

    CAS  PubMed  Google Scholar 

  66. Ridker PM, Cook NR, Lee IM, et al. A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med. 2005;352(13):1293–304.

    CAS  PubMed  Google Scholar 

  67. Ho PC, Triggs EJ, Bourne DW, et al. The effects of age and sex on the disposition of acetylsalicylic acid and its metabolites. Br J Clin Pharmacol. 1985;19(5):675–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. MacLeod SM, Giles HG, Bengert B, et al. Age- and gender-related differences in diazepam pharmacokinetics. J Clin Pharmacol. 1979;19(1):15–9.

    CAS  PubMed  Google Scholar 

  69. Greenblatt DJ, Harmatz JS, Singh NN, et al. Gender differences in pharmacokinetics and pharmacodynamics of zolpidem following sublingual administration. J Clin Pharmacol. 2014;54(3):282–90.

    CAS  PubMed  Google Scholar 

  70. Food and Drug Administration (FDA). FDA approves new label changes and dosing for zolpidem products and a recommendation to avoid driving the day after using Ambien CR. 2013 [updated 14 May 2013]. https://www.fda.gov/drugs/drugsafety/ucm352085.htm. Accessed 27 Mar 2019.

  71. National Institutes of Health (NIH). LiverTox: clinical and research information on drug-induced liver injury. Drug Record Zolpidem 2018. https://livertox.nlm.nih.gov/Zolpidem.htm. Accessed 27 Mar 2019.

  72. Greenblatt DJ, Harmatz JS, von Moltke LL, et al. Comparative kinetics and response to the benzodiazepine agonists triazolam and zolpidem: evaluation of sex-dependent differences. J Pharmacol Exp Ther. 2000;293(2):435–43.

    CAS  PubMed  Google Scholar 

  73. Roehrs TA, Roth T. Gender differences in the efficacy and safety of chronic nightly zolpidem. J Clin Sleep Med. 2016;12(3):319–25.

    PubMed  PubMed Central  Google Scholar 

  74. Kroboth PD, McAuley JW. Progesterone: does it affect response to drug? Psychopharmacol Bull. 1997;33(2):297–301.

    CAS  PubMed  Google Scholar 

  75. Stoehr GP, Kroboth PD, Juhl RP, et al. Effect of oral contraceptives on triazolam, temazepam, alprazolam, and lorazepam kinetics. Clin Pharmacol Ther. 1984;36(5):683–90.

    CAS  PubMed  Google Scholar 

  76. Raparelli V, Pannitteri G, Todisco T, et al. Treatment and response to statins: gender-related differences. Curr Med Chem. 2017;24(24):2628–38.

    CAS  PubMed  Google Scholar 

  77. Rosano GM, Lewis B, Agewall S, et al. Gender differences in the effect of cardiovascular drugs: a position document of the Working Group on Pharmacology and Drug Therapy of the ESC. Eur Heart J. 2015;36(40):2677–80.

    CAS  PubMed  Google Scholar 

  78. Lodovici M, Bigagli E, Luceri C, et al. Gender-related drug effect on several markers of oxidation stress in diabetes patients with and without complications. Eur J Pharmacol. 2015;5(766):86–90.

    Google Scholar 

  79. Cangemi R, Romiti GF, Campolongo G, et al. Gender related differences in treatment and response to statins in primary and secondary cardiovascular prevention: the never-ending debate. Pharmacol Res. 2017;117:148–55.

    CAS  PubMed  Google Scholar 

  80. Nanna MG, Wang TY, Xiang Q, et al. Sex differences in the use of statins in community practice. Circ Cardiovasc Qual Outcomes. 2019;12(8):e005562.

    PubMed  Google Scholar 

  81. Shen X, DiMario S, Philip K. Gender disparities in health resource utilization in patients with atherosclerotic cardiovascular disease: a retrospective cross-sectional study. Adv Ther. 2019;36(12):3424–34.

    PubMed  PubMed Central  Google Scholar 

  82. Regitz-Zagrosek V, Schubert C, Kruger S. Sex differences in cardiovascular drug targeting. Internist (Berl). 2008;49(11):1383–6.

    CAS  Google Scholar 

  83. Eugene AR. Metoprolol dose equivalence in adult men and women based on gender differences: pharmacokinetic modeling and simulations. Med Sci (Basel). 2016;4(4).

    PubMed  PubMed Central  Google Scholar 

  84. Kendall MJ, Quarterman CP, Jack DB, et al. Metoprolol pharmacokinetics and the oral contraceptive pill. Br J Clin Pharmacol. 1982;14(1):120–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kendall MJ, Jack DB, Quarterman CP, et al. Beta-adrenoceptor blocker pharmacokinetics and the oral contraceptive pill. Br J Clin Pharmacol. 1984;17(Suppl 1):87S–9S.

    PubMed  PubMed Central  Google Scholar 

  86. Eugene AR. Gender based dosing of metoprolol in the elderly using population pharmacokinetic modeling and simulations. Int J Clin Pharmacol Toxicol. 2016;5(3):209–15.

    PubMed  PubMed Central  Google Scholar 

  87. Ebert SN, Liu XK, Woosley RL. Female gender as a risk factor for drug-induced cardiac arrhythmias: evaluation of clinical and experimental evidence. J Womens Health. 1998;7(5):547–57.

    CAS  PubMed  Google Scholar 

  88. Lehmann MH, Hardy S, Archibald D, et al. Sex difference in risk of torsade de pointes with d,l-sotalol. Circulation. 1996;94(10):2535–41.

    CAS  PubMed  Google Scholar 

  89. Rodriguez I, Kilborn MJ, Liu XK, et al. Drug-induced QT prolongation in women during the menstrual cycle. JAMA. 2001;285(10):1322–6.

    CAS  PubMed  Google Scholar 

  90. Johannessen Landmark C, Beiske G, Baftiu A, et al. Experience from therapeutic drug monitoring and gender aspects of gabapentin and pregabalin in clinical practice. Seizure. 2015;28:88–91.

    PubMed  Google Scholar 

  91. Zellner N, Eyer F, Zellner T. Alarming pregabalin abuse in Munich: prevalence, patterns of use and complications. Dtsch Med Wochenschr. 2017;142(19):e140–7.

    PubMed  Google Scholar 

  92. Koch KM, Palmer JL, Noordin N, et al. Sex and age differences in the pharmacokinetics of alosetron. Br J Clin Pharmacol. 2002;53(3):238–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Viramontes BE, Camilleri M, McKinzie S, et al. Gender-related differences in slowing colonic transit by a 5-HT3 antagonist in subjects with diarrhea-predominant irritable bowel syndrome. Am J Gastroenterol. 2001;96(9):2671–6.

    CAS  PubMed  Google Scholar 

  94. Ismail J, Abdellaoui I, Ucar V, et al. [Prucaloprid—Treatment of chronic constipation in women] 2010. https://www2.hhu.de/kojda-pharmalehrbuch/FortbildungstelegrammPharmazie/SerieNeueArzneimittel/Prucaloprid_fuer_FortePharm_2010.pdf. Accessed 27 Mar 2019.

Download references

Acknowledgements

Funding

No funding was received for the preparation of this review of the literature. The Rapid Service fee was funded by the corresponding author.

Medical Writing and Editorial Assistance

The authors wish to acknowledge the contribution of Margit Hemetsberger, Hemetsberger Medical Services, Vienna, Austria, for editorial assistance, funded by the corresponding author.

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Disclosures

André Farkouh, Thomas Riedl, Roman Gottardi, Martin Czejka and Alexandra Kautzky-Willer declare no conflicts of interest in this work. The authors do not have any commercial or proprietary interest in the products discussed or their respective companies.

Compliance with Ethics Guidelines

This article is based on previously conducted studies and does not contain any studies with human participants or animals performed by any of the authors.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current literature review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Farkouh.

Additional information

Enhanced Digital Features

To view enhanced digital features for this article go to https://doi.org/10.6084/m9.figshare.11353607.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkouh, A., Riedl, T., Gottardi, R. et al. Sex-Related Differences in Pharmacokinetics and Pharmacodynamics of Frequently Prescribed Drugs: A Review of the Literature. Adv Ther 37, 644–655 (2020). https://doi.org/10.1007/s12325-019-01201-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-019-01201-3

Keywords

Navigation