Skip to main content

Advertisement

Log in

Clinical Heterogeneity of Essential Tremor: Understanding Neural Substrates of Action Tremor Subtypes

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Essential tremor (ET) is a common movement disorder affecting millions of people. Studies of ET patients and perturbations in animal models have provided a foundation for the neural networks involved in its pathophysiology. However, ET encompasses a wide variability of phenotypic expression, and this may be the consequence of dysfunction in distinct subcircuits in the brain. The cerebello-thalamo-cortical circuit is a common substrate for the multiple subtypes of action tremor. Within the cerebellum, three sets of cerebellar cortex-deep cerebellar nuclei connections are important for tremor. The lateral hemispheres and dentate nuclei may be involved in intention, postural and isometric tremor. The intermediate zone and interposed nuclei could be involved in intention tremor. The vermis and fastigial nuclei could be involved in head and proximal upper extremity tremor. Studying distinct cerebellar circuitry will provide important framework for understanding the clinical heterogeneity of ET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Elble R, Deuschl G. Milestones in tremor research. Mov Disord: Off J Mov Disord Soc 2011;26(6):1096–1105.

    Article  CAS  PubMed  Google Scholar 

  2. Sternberg EJ, Alcalay RN, Levy OA, Louis ED. Postural and Intention Tremors: A Detailed Clinical Study of Essential Tremor vs. Parkinson’s Dis Front Neurol. 2013;4:51.

    Google Scholar 

  3. Schuhmayer N, Weber C, Kieler M, Voller B, Pirker W, Auff E, Haubenberger D. Task-dependent Variability of Essential Tremor. Parkinsonism Relat Disord. 2017;41:79–85.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Louis ED. Essential tremor: A nuanced approach to the clinical features. Pract Neurol. 2019;19(5):389–98.

    Article  PubMed  Google Scholar 

  5. Schrag A, Münchau A, Bhatia KP, Quinn NP, Marsden CD. Essential tremor: An overdiagnosed condition? J Neurol. 2000;247(12):955–9.

    Article  CAS  PubMed  Google Scholar 

  6. Bhidayasiri R. Differential diagnosis of common tremor syndromes. Postgrad Med J. 2005;81(962):756–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Louis ED, Frucht SJ, Rios E. Intention Tremor in Essential Tremor: Prevalence and Association with Disease Duration. Mov Disord: Off J Mov Disord Soc. 2009;24(4):626–7.

    Article  Google Scholar 

  8. Louis ED. Twelve clinical pearls to help distinguish essential tremor from other tremors. Expert Rev Neurother. 2014;14(9):1057–65.

    Article  CAS  PubMed  Google Scholar 

  9. Critchley M. Observations on essential (heredofamial) tremor. Brain: A. J Neurol. 1949;72(Pt. 2):113–39.

    CAS  Google Scholar 

  10. Jain S, Lo SE, Louis ED. Common misdiagnosis of a common neurological disorder: How are we misdiagnosing essential tremor? Arch Neurol. 2006;63(8):1100–4.

    Article  PubMed  Google Scholar 

  11. Phibbs F, Fang JY, Cooper MK, Charles DP, Davis TL, Hedera P. Prevalence of unilateral tremor in autosomal dominant essential tremor. Mov Disord: Off J Mov Disord Soc. 2009;24(1):108–11.

    Article  Google Scholar 

  12. Bhatia KP, Bain P, Bajaj N, Elble RJ, Hallett M, Louis ED, Raethjen J, Stamelou M, Testa CM, Deuschl G, Tremor Task Force of the International Parkinson and Movement Disorder Society. Consensus Statement on the classification of tremors. From the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord: Off J Mov Disord Soc. 2018;33(1):75–87.

    Article  Google Scholar 

  13. Deuschl G, Wenzelburger R, Löffler K, Raethjen J, Stolze H. Essential tremor and cerebellar dysfunction clinical and kinematic analysis of intention tremor. Brain: A. J Neurol. 2000;123(Pt 8):1568–80.

    Google Scholar 

  14. Köster B, Deuschl G, Lauk M, Timmer J, Guschlbauer B, Lücking CH. Essential tremor and cerebellar dysfunction: Abnormal ballistic movements. J Neurol Neurosurg Psychiatry. 2002;73(4):400–5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Habib-ur-Rehman MRCP. Diagnosis and management of tremor. Arch Intern Med. 2000;160(16):2438–44.

    Article  CAS  PubMed  Google Scholar 

  16. Jankovic J, Ashoori A. Movement disorders in musicians. Mov Disord: Off J Mov Disord Soc. 2008;23(14)

  17. Lee A, Furuya S, Altenmüller E. Epidemiology and treatment of 23 musicians with task specific tremor. J Clin Mov Disord. 2014;1:5.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Findley LJ, Capildeo R. Movement Disorders: Tremor. New York: Oxford University Press; 1984.

    Book  Google Scholar 

  19. McAuley JH, Marsden CD. Physiological and pathological tremors and rhythmic central motor control. Brain: A. J Neurol. 2000;123(Pt 8):1545–67.

    Google Scholar 

  20. Louis ED, Faust PL. Essential tremor pathology: Neurodegeneration and reorganization of neuronal connections. Nat Rev Neurol. 2020;16(2):69–83.

    Article  CAS  PubMed  Google Scholar 

  21. Ibrahim MF, Beevis JC, Empson RM. Essential Tremor—A Cerebellar Driven Disorder? Neuroscience. 2021;462:262–73.

    Article  CAS  PubMed  Google Scholar 

  22. Deuschl G, Bain P, Brin M. Consensus statement of the Movement Disorder Society on Tremor. Ad Hoc Scientific Committee. Mov Disord: Off J Mov Disord Soc. 1998;13(Suppl 3):2–23.

    Google Scholar 

  23. Hua SE, Lenz FA. Posture-related oscillations in human cerebellar thalamus in essential tremor are enabled by voluntary motor circuits. J Neurophysiol. 2005;93(1):117–27.

    Article  PubMed  Google Scholar 

  24. Zakaria R, Lenz F, Hua S, Avin B, Liu C, Mari Z. Thalamic physiology of intentional essential tremor is more like cerebellar tremor than postural essential tremor. Brain Res. 2013;1529:188–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elble RJ. The Essential Tremor Rating Assessment Scale. J Neurol Neuromed. 2016;1(4)

  26. Isaacson SH, Peckham E, Tse W, Waln O, Way C, Petrossian MT, Dahodwala N, Soileau MJ, Lew M, Dietiker C, Luthra N, Agarwal P, Dhall R, Morgan J, Calakos N, Zesiewicz TA, Shamim EA, Kumar R, LeWitt P, et al. Prospective Home-use Study on Non-invasive Neuromodulation Therapy for Essential Tremor. Tremor Other Hyperkinetic Mov. 2020;10:29.

    Article  Google Scholar 

  27. Papapetropoulos S, Lee MS, Versavel S, Newbold E, Jinnah HA, Pahwa R, Lyons KE, Elble R, Ondo W, Zesiewicz T, Hedera P, Handforth A, Elder J, Versavel M. A Phase 2 Proof-of-Concept, Randomized, Placebo-Controlled Trial of CX-8998 in Essential Tremor. Mov Disord: Off J Mov Disord Soc. 2021;36(8):1944–9.

    Article  CAS  Google Scholar 

  28. Louis ED, Bares M, Benito-Leon J, Fahn S, Frucht SJ, Jankovic J, Ondo WG, Pal PK, Tan E-K. Essential tremor-plus: A controversial new concept. Lancet Neurol. 2020;19(3):266–70.

    Article  PubMed  Google Scholar 

  29. Gupta DK, Marano M, Zweber C, Boyd JT, Kuo S-H. Prevalence and Relationship of Rest Tremor and Action Tremor in Parkinson’s Disease. Tremor Other Hyperkinetic Mov. 2020;10:58.

    Article  Google Scholar 

  30. Koller WC, Rubino FA. Combined Resting-Postural Tremors. Arch Neurol. 1985;42(7):683–4.

    Article  CAS  PubMed  Google Scholar 

  31. Rapoport A, Braun H, Aviv A, Sarova I. Combined resting-postural tremor of the head with a changing axis. Mov Disord: Off J Mov Disord Soc. 1991;6(3):261–2.

    Article  CAS  Google Scholar 

  32. Rajput AH, Rozdilsky B, Ang L, Rajput A. Significance of parkinsonian manifestations in essential tremor. Can J Neurol Sci Le J Can Des Sci Neurol. 1993;20(2):114–7.

    Article  CAS  Google Scholar 

  33. Cohen O, Pullman S, Jurewicz E, Watner D, Louis ED. Rest tremor in patients with essential tremor: Prevalence, clinical correlates, and electrophysiologic characteristics. Arch Neurol. 2003;60(3):405–10.

    Article  PubMed  Google Scholar 

  34. Thenganatt MA, Louis ED. Distinguishing essential tremor from Parkinson’s disease: Bedside tests and laboratory evaluations. Expert Rev Neurother. 2012;12(6):687–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thenganatt MA, Jankovic J. The relationship between essential tremor and Parkinson’s disease. Parkinsonism Relat Disord. 2016;22(Suppl 1):S162–5.

    Article  PubMed  Google Scholar 

  36. Lang AE, Jog M, Ashby P. “Weight-holding tremor”: An unusual task-specific form of essential tremor? Mov Disord: Off J Mov Disord Soc. 1995;10(2):228–9.

    Article  CAS  Google Scholar 

  37. Hesselmann V, Maarouf M, Hunsche S, Lasek K, Schaaf M, Krug B, Lackner K, Sturm V, Wedekind C. Functional MRI for immediate monitoring stereotactic thalamotomy in a patient with essential tremor. Eur Radiol. 2006;16(10):2229–33.

    Article  PubMed  Google Scholar 

  38. Neely KA, Kurani AS, Shukla P, Planetta PJ, Wagle Shukla A, Goldman JG, Corcos DM, Okun MS, Vaillancourt DE. Functional Brain Activity Relates to 0–3 and 3–8 Hz Force Oscillations in Essential Tremor. Cereb Cortex. 2015;25(11):4191–202.

    Article  PubMed  Google Scholar 

  39. Novak T, Newell KM. Physiological tremor (8-12Hz component) in isometric force control. Neurosci Lett. 2017;641:87–93.

    Article  CAS  PubMed  Google Scholar 

  40. Dirkx MF, Zach H, Bloem BR, Hallett M, Helmich RC. The nature of postural tremor in Parkinson disease. Neurology. 2018;90(13):e1095–103.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cichaczewski E, Munhoz RP, Maia JM, Nohama P, Nóvak EM, Teive HA. Electrophysiologic characteristics of tremor in Parkinson’s disease and essential tremor. Arq Neuropsiquiatr. 2014;72(4):301–6.

    Article  PubMed  Google Scholar 

  42. Bucher SF, Seelos KC, Dodel RC, Reiser M, Oertel WH. Activation mapping in essential tremor with functional magnetic resonance imaging. Ann Neurol. 1997;41(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  43. Contarino MF, Groot PFC, van der Meer JN, Bour LJ, Speelman JD, Nederveen AJ, van den Munckhof P, Tijssen MAJ, Schuurman PR, van Rootselaar A-F. Is There a Role for Combined EMG-fMRI in Exploring the Pathophysiology of Essential Tremor and Improving Functional Neurosurgery? PLoS One. 2012;7(10):e46234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Broersma M, van der Stouwe AMM, Buijink AWG, de Jong BM, Groot PFC, Speelman JD, Tijssen MAJ, van Rootselaar A-F, Maurits NM. Bilateral cerebellar activation in unilaterally challenged essential tremor. NeuroImage: Clinical. 2015;11:1–9.

    PubMed  Google Scholar 

  45. Buijink, AWG, Madelein van der Stouwe AM, Broersma M, Sharifi S, Groot PFC, Speelman JD, Maurits NM, van Rootselaar AF. Motor network disruption in essential tremor: a functional and effective connectivity study. Brain J Neurol. 2015;138(Pt 10):2934–47.

  46. Fang W, Chen H, Wang H, Zhang H, Puneet M, Liu M, Lv F, Luo T, Cheng O, Wang X, Lu X. Essential tremor is associated with disruption of functional connectivity in the ventral intermediate Nucleus—Motor Cortex—Cerebellum circuit. Hum Brain Mapp. 2016;37(1):165–78.

    Article  PubMed  Google Scholar 

  47. Boscolo Galazzo I, Magrinelli F, Pizzini FB, Storti SF, Agosta F, Filippi M, Marotta A, Mansueto G, Menegaz G, Tinazzi M. Voxel-based morphometry and task functional magnetic resonance imaging in essential tremor: Evidence for a disrupted brain network. Sci Rep. 2020;10(1):15061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nicoletti V, Cecchi P, Frosini D, Pesaresi I, Fabbri S, Diciotti S, Bonuccelli U, Cosottini M, Ceravolo R. Morphometric and functional MRI changes in essential tremor with and without resting tremor. J Neurol. 2015;262(3):719–28.

    Article  PubMed  Google Scholar 

  49. Buijink AWG, Broersma M, van der Stouwe AMM, van Wingen GA, Groot PFC, Speelman JD, Maurits NM, van Rootselaar AF. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor. Parkinsonism Relat Disord. 2015;21(4):383–8.

    Article  CAS  PubMed  Google Scholar 

  50. Colebatch JG, Findley LJ, Frackowiak RS, Marsden CD, Brooks DJ. Preliminary report: Activation of the cerebellum in essential tremor. Lancet (London, England). 1990;336(8722):1028–30.

    Article  CAS  PubMed  Google Scholar 

  51. Jenkins IH, Bain PG, Colebatch JG, Thompson PD, Findley LJ, Frackowiak RS, Marsden CD, Brooks DJ. A positron emission tomography study of essential tremor: Evidence for overactivity of cerebellar connections. Ann Neurol. 1993;34(1):82–90.

    Article  CAS  PubMed  Google Scholar 

  52. Wills AJ, Jenkins IH, Thompson PD, Findley LJ, Brooks DJ. Red nuclear and cerebellar but no olivary activation associated with essential tremor: A positron emission tomographic study. Ann Neurol. 1994;36(4):636–42.

    Article  CAS  PubMed  Google Scholar 

  53. Wills AJ, Jenkins IH, Thompson PD, Findley LJ, Brooks DJ. A positron emission tomography study of cerebral activation associated with essential and writing tremor. Arch Neurol. 1995;52(3):299–305.

    Article  CAS  PubMed  Google Scholar 

  54. Boecker H, Wills AJ, Ceballos-Baumann A, Samuel M, Thompson PD, Findley LJ, Brooks DJ. The effect of ethanol on alcohol-responsive essential tremor: A positron emission tomography study. Ann Neurol. 1996;39(5):650–8.

    Article  CAS  PubMed  Google Scholar 

  55. Rajput AH, Maxood K, Rajput A. Classic Essential Tremor Changes Following Cerebellar Hemorrhage. Neurology. 2008;71(21):1739–40.

    Article  PubMed  Google Scholar 

  56. Dupuis MJ, Delwaide PJ, Boucquey D, Gonsette RE. Homolateral disappearance of essential tremor after cerebellar stroke. Mov Disord: Off J Mov Disord Soc. 1989;4(2):183–7.

    Article  CAS  Google Scholar 

  57. Dupuis MJ-M, Evrard FLA, Jacquerye PG, Picard GR, Lermen OG. Disappearance of essential tremor after stroke. Mov Disord: Off J Mov Disord Soc. 2010;25(16):2884–7.

    Article  Google Scholar 

  58. Duncan R, Bone I, Melville ID. Essential tremor cured by infarction adjacent to the thalamus. J Neurol Neurosurg Psychiatry. 1988;51(4):591–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Im JH, Kim JS, Lee MC. Disappearance of essential tremor after small thalamic hemorrhage. Clin Neurol Neurosurg. 1996;98(1):40–2.

    Article  CAS  PubMed  Google Scholar 

  60. Barbaud A, Hadjout K, Blard JM, Pagès M. Improvement in Essential Tremor after Pure Sensory Stroke due to Thalamic Infarction. Eur Neurol. 2001;46(1):57–9.

    Article  CAS  PubMed  Google Scholar 

  61. Nagaratnam N, Kalasabail G. Contralateral abolition of essential tremor following a pontine stroke. J Neurol Sci. 1997;149(2):195–6.

    Article  CAS  PubMed  Google Scholar 

  62. Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev. 1974;54(4):957–1006.

    Article  CAS  PubMed  Google Scholar 

  63. Asanuma C, Thach WR, Jones EG. Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res. 1983a;286(3):267–97.

    Article  CAS  PubMed  Google Scholar 

  64. Joutsa J, Shih LC, Horn A, Reich MM, Wu O, Rost NS, Fox MD. Identifying therapeutic targets from spontaneous beneficial brain lesions. Ann Neurol. 2018;84(1):153–7.

    Article  PubMed  Google Scholar 

  65. Hirai T, Miyazaki M, Nakajima H, Shibazaki T, Ohye C. The correlation between tremor characteristics and the predicted volume of effective lesions in stereotaxic nucleus ventralis intermedius thalamotomy. Brain: A. J Neurol. 1983;106(Pt 4):1001–18.

    Google Scholar 

  66. Speelman JD, Schuurman PR, de Bie RM, Bosch DA. Thalamic surgery and tremor. Mov Disord: Off J Mov Disord Soc. 1998;13(Suppl 3):103–6.

    Google Scholar 

  67. Elias WJ, Huss D, Voss T, Loomba J, Khaled M, Zadicario E, Frysinger RC, Sperling SA, Wylie S, Monteith SJ, Druzgal J, Shah BB, Harrison M, Wintermark M. A Pilot Study of Focused Ultrasound Thalamotomy for Essential Tremor. N Engl J Med. 2013;369(7):640–8.

    Article  CAS  PubMed  Google Scholar 

  68. Elias WJ, Lipsman N, Ondo WG, Ghanouni P, Kim YG, Lee W, Schwartz M, Hynynen K, Lozano AM, Shah BB, Huss D, Dallapiazza RF, Gwinn R, Witt J, Ro S, Eisenberg HM, Fishman PS, Gandhi D, Halpern CH, et al. A Randomized Trial of Focused Ultrasound Thalamotomy for Essential Tremor. N Engl J Med. 2016;375(8):730–9.

    Article  PubMed  Google Scholar 

  69. Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M, Hynynen K, Lozano AM. MR-guided focused ultrasound thalamotomy for essential tremor: A proof-of-concept study. Lancet Neurol. 2013;12(5):462–8.

    Article  PubMed  Google Scholar 

  70. Wintermark M, Huss DS, Shah BB, Tustison N, Druzgal TJ, Kassell N, Elias WJ. Thalamic connectivity in patients with essential tremor treated with MR imaging-guided focused ultrasound: In vivo fiber tracking by using diffusion-tensor MR imaging. Radiology. 2014;272(1):202–9.

    Article  PubMed  Google Scholar 

  71. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, de Rougemont J. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet (London, England). 1991;337(8738):403–6.

    Article  CAS  PubMed  Google Scholar 

  72. Koller WC, Pahwa PR, Lyons KE, Wilkinson SB. Deep brain stimulation of the Vim nucleus of the thalamus for the treatment of tremor. Neurology. 2000;55(12 Suppl 6):S29–33.

    CAS  PubMed  Google Scholar 

  73. Koller WC, Lyons KE, Wilkinson SB, Troster AI, Pahwa R. Long-term safety and efficacy of unilateral deep brain stimulation of the thalamus in essential tremor. Mov Disord: Off J Mov Disord Soc. 2001;16(3):464–8.

    Article  CAS  Google Scholar 

  74. Ceballos-Baumann AO, Boecker H, Fogel W, Alesch F, Bartenstein P, Conrad B, Diederich N, von Falkenhayn I, Moringlane JR, Schwaiger M, Tronnier VM. Thalamic stimulation for essential tremor activates motor and deactivates vestibular cortex. Neurology. 2001;56(10):1347–54.

    Article  CAS  PubMed  Google Scholar 

  75. Perlmutter JS, Mink JW, Bastian AJ, Zackowski K, Hershey T, Miyawaki E, Koller W, Videen TO. Blood flow responses to deep brain stimulation of thalamus. Neurology. 2002;58(9):1388–94.

    Article  CAS  PubMed  Google Scholar 

  76. Zackowski KM, Bastian AJ, Hakimian S, Mink JW, Perlmutter JS, Koller WC, Thach WT. Thalamic stimulation reduces essential tremor but not the delayed antagonist muscle timing. Neurology. 2002;58(3):402–10.

    Article  CAS  PubMed  Google Scholar 

  77. Vaillancourt DE, Sturman MM, Verhagen Metman L, Bakay R, a. E., & Corcos, D. M. Deep brain stimulation of the VIM thalamic nucleus modifies several features of essential tremor. Neurology. 2003;61(7):919–25.

    Article  CAS  PubMed  Google Scholar 

  78. Chen H, Hua SE, Smith MA, Lenz FA, Shadmehr R. Effects of human cerebellar thalamus disruption on adaptive control of reaching. Cereb Cortex. 2006;16(10):1462–73.

    Article  PubMed  Google Scholar 

  79. Klein JC, Barbe MT, Seifried C, Baudrexel S, Runge M, Maarouf M, Gasser T, Hattingen E, Liebig T, Deichmann R, Timmermann L, Weise L, Hilker R. The tremor network targeted by successful VIM deep brain stimulation in humans. Neurology. 2012;78(11):787–95.

    Article  CAS  PubMed  Google Scholar 

  80. Hua SE, Lenz FA, Zirh TA, Reich SG, Dougherty PM. Thalamic neuronal activity correlated with essential tremor. J Neurol Neurosurg Psychiatry. 1998;64(2):273–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Molnar GF, Pilliar A, Lozano AM, Dostrovsky JO. Differences in neuronal firing rates in pallidal and cerebellar receiving areas of thalamus in patients with Parkinson’s disease, essential tremor, and pain. J Neurophysiol. 2005;93(6):3094–101.

    Article  CAS  PubMed  Google Scholar 

  82. Scherer M, Steiner LA, Kalia SK, Hodaie M, Kühn AA, Lozano AM, Hutchison WD, Milosevic L. Single-neuron bursts encode pathological oscillations in subcortical nuclei of patients with Parkinson’s disease and essential tremor. Proc Natl Acad Sci U S A. 2022;119(35):e2205881119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Britton TC, Thompson PD, Day BL, Rothwell JC, Findley LJ, Marsden CD. Modulation of postural wrist tremors by magnetic stimulation of the motor cortex in patients with Parkinson’s disease or essential tremor and in normal subjects mimicking tremor. Ann Neurol. 1993;33(5):473–9.

    Article  CAS  PubMed  Google Scholar 

  84. Hellriegel H, Schulz EM, Siebner HR, Deuschl G, Raethjen JH. Continuous theta-burst stimulation of the primary motor cortex in essential tremor. Clin Neurophysiol. 2012;123(5):1010–5.

    Article  PubMed  Google Scholar 

  85. Chuang W-L, Huang Y-Z, Lu C-S, Chen R-S. Reduced cortical plasticity and GABAergic modulation in essential tremor. Mov Disord: Off J Mov Disord Soc. 2014;29(4):501–7.

    Article  Google Scholar 

  86. Louis ED, Faust PL, Vonsattel J-PG, Honig LS, Rajput A, Robinson CA, Rajput A, Pahwa R, Lyons KE, Ross GW, Borden S, Moskowitz CB, Lawton A, Hernandez N. Neuropathological changes in essential tremor: 33 cases compared with 21 controls. Brain: A. J Neurol. 2007;130(Pt 12):3297–307.

    Google Scholar 

  87. Choe M, Cortés E, Vonsattel J-PG, Kuo S-H, Faust PL, Louis ED. Purkinje cell loss in essential tremor: Random sampling quantification and nearest neighbor analysis. Mov Disord: Off J Mov Disord Soc. 2016;31(3):393–401.

    Article  Google Scholar 

  88. Louis ED, Faust PL, Ma KJ, Yu M, Cortes E, Vonsattel J-PG. Torpedoes in the cerebellar vermis in essential tremor cases vs. Controls. Cerebellum (London, England). 2011;10(4):812–9.

    Article  PubMed  Google Scholar 

  89. Babij R, Lee M, Cortés E, Vonsattel J-PG, Faust PL, Louis ED. Purkinje cell axonal anatomy: Quantifying morphometric changes in essential tremor versus control brains. Brain: A. J Neurol. 2013;136(Pt 10):3051–61.

    Google Scholar 

  90. Louis ED, Lee M, Babij R, Ma K, Cortés E, Vonsattel J-PG, Faust PL. Reduced Purkinje cell dendritic arborization and loss of dendritic spines in essential tremor. Brain: A. J Neurol. 2014;137(Pt 12):3142–8.

    Google Scholar 

  91. Erickson-Davis CR, Faust PL, Vonsattel J-PG, Gupta S, Honig LS, Louis ED. “Hairy baskets” associated with degenerative Purkinje cell changes in essential tremor. J Neuropathol Exp Neurol. 2010;69(3):262–71.

    Article  PubMed  Google Scholar 

  92. Kuo S-H, Tang G, Louis ED, Ma K, Babji R, Balatbat M, Cortes E, Vonsattel J-PG, Yamamoto A, Sulzer D, Faust PL. Lingo-1 expression is increased in essential tremor cerebellum and is present in the basket cell pinceau. Acta Neuropathol. 2013;125(6):879–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lin C-Y, Louis ED, Faust PL, Koeppen AH, Vonsattel J-PG, Kuo S-H. Abnormal climbing fibre-Purkinje cell synaptic connections in the essential tremor cerebellum. Brain: A. J Neurol. 2014;137(Pt 12):3149–59.

    Google Scholar 

  94. Louis RJ, Lin C-Y, Faust PL, Koeppen AH, Kuo S-H. Climbing fiber synaptic changes correlate with clinical features in essential tremor. Neurology. 2015;84(22):2284–6.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kuo S-H, Lin C-Y, Wang J, Liou J-Y, Pan M-K, Louis RJ, Wu W-P, Gutierrez J, Louis ED, Faust PL. Deep brain stimulation and climbing fiber synaptic pathology in essential tremor. Ann Neurol. 2016;80(3):461–5.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kuo S-H, Lin C-Y, Wang J, Sims PA, Pan M-K, Liou J-Y, Lee D, Tate WJ, Kelly GC, Louis ED, Faust PL. Climbing fiber-Purkinje cell synaptic pathology in tremor and cerebellar degenerative diseases. Acta Neuropathol. 2017;133(1):121–38.

    Article  PubMed  Google Scholar 

  97. Lee D, Gan S-R, Faust PL, Louis ED, Kuo S-H. Climbing fiber-Purkinje cell synaptic pathology across essential tremor subtypes. Parkinsonism Relat Disord. 2018;51:24–9.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wu Y-C, Louis ED, Gionco J, Pan M-K, Faust PL, Kuo S-H. Increased Climbing Fiber Lateral Crossings on Purkinje Cell Dendrites in the Cerebellar Hemisphere in Essential Tremor. Mov Disord: Off J Mov Disord Soc. 2021;36(6):1440–5.

    Article  CAS  Google Scholar 

  99. Thier S, Lorenz D, Nothnagel M, Poremba C, Papengut F, Appenzeller S, Paschen S, Hofschulte F, Hussl A-C, Hering S, Poewe W, Asmus F, Gasser T, Schöls L, Christensen K, Nebel A, Schreiber S, Klebe S, Deuschl G, Kuhlenbäumer G. Polymorphisms in the glial glutamate transporter SLC1A2 are associated with essential tremor. Neurology. 2012;79(3):243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang J, Kelly GC, Tate WJ, Li YS, Lee M, Gutierrez J, Louis ED, Faust PL, Kuo S-H. Excitatory Amino acid transporter expression in the essential tremor dentate nucleus and cerebellar cortex: A postmortem study. Parkinsonism Relat Disord. 2016;32:87–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Louis ED, Kerridge CA, Chatterjee D, Martuscello RT, Diaz DT, Koeppen AH, Kuo S-H, Vonsattel J-PG, Sims PA, Faust PL. Contextualizing the pathology in the essential tremor cerebellar cortex: A patholog-omics approach. Acta Neuropathol. 2019;138(5):859–76.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lee M, Cheng MM, Lin C-Y, Louis ED, Faust PL, Kuo S-H. Decreased EAAT2 protein expression in the essential tremor cerebellar cortex. Acta Neuropathol Commun. 2014;2:157.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Pan MK, Li YS, Wong SB, Ni CL, Wang YM, Liu WC, Lu LY, Lee JC, Cortes EP, Vonsattel JPG, Sun Q, Louis ED, Faust PL, Kuo SH. Cerebellar oscillations driven by synaptic pruning deficits of cerebellar climbing fibers contribute to tremor pathophysiology. Sci Transl Med. 2020;12(526):eaay1769.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wong S-B, Wang Y-M, Lin C-C, Geng SK, Vanegas-Arroyave N, Pullman SL, Kuo S-H, Pan M-K. Cerebellar Oscillations in Familial and Sporadic Essential Tremor. Cerebellum (London, England). 2022;21(3):425–31.

    Article  PubMed  Google Scholar 

  105. Schreglmann SR, Wang D, Peach RL, Li J, Zhang X, Latorre A, Rhodes E, Panella E, Cassara AM, Boyden ES, Barahona M, Santaniello S, Rothwell J, Bhatia KP, Grossman N. Non-invasive suppression of essential tremor via phase-locked disruption of its temporal coherence. Nat Commun. 2021;12(1):363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brodal P. The pontocerebellar projection in the rhesus monkey: An experimental study with retrograde axonal transport of horseradish peroxidase. Neuroscience. 1979;4(2):193–208.

    Article  CAS  PubMed  Google Scholar 

  107. Thielert CD, Thier P. Patterns of projections from the pontine nuclei and the nucleus reticularis tegmenti pontis to the posterior vermis in the rhesus monkey: A study using retrograde tracers. J Comp Neurol. 1993;337(1):113–26.

    Article  CAS  PubMed  Google Scholar 

  108. Cicirata F, Serapide MF, Parenti R, Pantò MR, Zappalà A, Nicotra A, Cicero D. The basilar pontine nuclei and the nucleus reticularis tegmenti pontis subserve distinct cerebrocerebellar pathways. Prog Brain Res. 2005;148:259–82.

    Article  PubMed  Google Scholar 

  109. Tsukahara N, Korn H, Stone J. Pontine Relay from Cerebral Cortex to Cerebellar Cortex and Nucleus Interpositus. Brain Res. 1968;10(3):448–53.

    Article  CAS  PubMed  Google Scholar 

  110. Evarts EV, Thach WT. Motor mechanisms of the CNS: Cerebrocerebellar interrelations. Annu Rev Physiol. 1969;31:451–98.

    Article  CAS  PubMed  Google Scholar 

  111. Suzuki L, Coulon P, Sabel-Goedknegt EH, Ruigrok TJH. Organization of cerebral projections to identified cerebellar zones in the posterior cerebellum of the rat. J Neurosci Off J Soc Neurosci. 2012;32(32):10854–69.

    Article  CAS  Google Scholar 

  112. Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6(4):297–311.

    Article  CAS  PubMed  Google Scholar 

  113. Ruigrok TJH. Ins and outs of cerebellar modules. Cerebellum (London, England). 2011;10(3):464–74.

    Article  PubMed  Google Scholar 

  114. Berkley KJ, Hand PJ. Projections to the Inferior Olive of the Cat. II. Comparisons of Input from the Gracile, Cuneate and the Spinal Trigeminal Nuclei. J Comp Neurol. 1978;180(2):253–64. https://doi.org/10.1002/cne.901800205.

    Article  CAS  PubMed  Google Scholar 

  115. Hoffmann KP, Distler C, Erickson RG, Mader W. Physiological and Anatomical Identification of the Nucleus of the Optic Tract and Dorsal Terminal Nucleus of the Accessory Optic Tract in Monkeys. Exp Brain Res. 1988;69(3):635–44. https://doi.org/10.1007/BF00247315.

    Article  CAS  PubMed  Google Scholar 

  116. Onodera S. Olivary Projections from the Mesodiencephalic Structures in the Cat Studied by Means of Axonal Transport of Horseradish Peroxidase and Tritiated Amino Acids. J Comp Neurol. 1984;227(1):37–49. https://doi.org/10.1002/cne.902270106.

    Article  CAS  PubMed  Google Scholar 

  117. Saint-Cyr JA. The Projection from the Motor Cortex to the Inferior Olive in the Cat. An Experimental Study Using Axonal Transport Techniques. Neuroscience. 1983;10(3):667–84. https://doi.org/10.1016/0306-4522(83)90209-9.

    Article  CAS  PubMed  Google Scholar 

  118. Palay SL, Chan-Palay V. Cerebellar Cortex Berlin. Heidelberg: Heidelberg: Springer Berlin; 1974.

    Book  Google Scholar 

  119. Chan-Palay V. Cerebellar Dentate Nucleus; Organization, Cytology and Transmitters. Berlin: Springer-Verlag; 1977.

    Book  Google Scholar 

  120. Eccles JC. Circuits in the cerebellar control of movement. Proc Natl Acad Sci U S A. 1967;58(1):336–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jansen J, Brodal A. Experimental studies on the intrinsic fibers of the cerebellum. II. The cortico-nuclear projection. J Comp Neurol. 1940;73(2):267–321.

    Article  Google Scholar 

  122. Chambers WW, Sprague JM. Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei. A.M.A. Arch Neurol Psychiatr. 1955b;74(6):653–80.

    Article  CAS  Google Scholar 

  123. Gould BB. The organization of afferents to the cerebellar cortex in the cat: Projections from the deep cerebellar nuclei. J Comp Neurol. 1979;184(1):27–42.

    Article  CAS  PubMed  Google Scholar 

  124. Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2011;481(7382):502–5.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Päällysaho J, Sugita S, Noda H. Cerebellar corticonuclear and nucleocortical projections in the vermis of posterior lobe of the rat as studied with anterograde and retrograde transport of WGA-HRP. Neurosci Res. 1990;8(3):158–78.

    Article  PubMed  Google Scholar 

  126. Kebschull JM, Richman EB, Ringach N, Friedmann D, Albarran E, Kolluru SS, Jones RC, Allen WE, Wang Y, Cho SW, Zhou H, Ding JB, Chang HY, Deisseroth K, Quake SR, Luo L. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science (New York, N.Y.). 2020;370(6523):eabd5059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yopak KE, Pakan JMP, Wylie D. In: Kaas JH, editor. Evolution of Nervous Systems, vol. 1–4. 2nd ed. Academic Press; 2016. p. 373–85.

    Google Scholar 

  128. Sasaki K, Jinnai K, Gemba H, Hashimoto S, Mizuno N. Projection of the cerebellar dentate nucleus onto the frontal association cortex in monkeys. Exp Brain Res. 1979;37(1):193–8.

    Article  CAS  PubMed  Google Scholar 

  129. Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17(5):241–54.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Tellmann S, Bludau S, Eickhoff S, Mohlberg H, Minnerop M, Amunts K. Cytoarchitectonic mapping of the human brain cerebellar nuclei in stereotaxic space and delineation of their co-activation patterns. Front Neuroanat. 2015;9:54.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Allen GI, Gilbert PF, Yin TC. Convergence of cerebral inputs onto dentate neurons in monkey. Exp Brain Res. 1978;32(2):151–70.

    Article  CAS  PubMed  Google Scholar 

  132. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9.

    Article  PubMed  Google Scholar 

  133. Gibson AR, Robinson FR, Alam J, Houk JC. Somatotopic alignment between climbing fiber input and nuclear output of the cat intermediate cerebellum. J Comp Neurol. 1987;260(3):362–77.

    Article  CAS  PubMed  Google Scholar 

  134. Boillat Y, Bazin P-L, van der Zwaag W. Whole-body somatotopic maps in the cerebellum revealed with 7T fMRI. NeuroImage. 2020;211:116624.

    Article  PubMed  Google Scholar 

  135. Ito M. Bases and implications of learning in the cerebellum—Adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.

    Article  PubMed  Google Scholar 

  136. Growdon JH, Chambers WW, Liu CN. An experimental study of cerebellar dyskinesia in the rhesus monkey. Brain: A. J Neurol. 1967;90(3):603–32.

    CAS  Google Scholar 

  137. Brooks VB, Kozlovskaya IB, Atkin A, Horvath FE, Uno M. Effects of cooling dentate nucleus on tracking-task performance in monkeys. J Neurophysiol. 1973;36(6):974–95.

    Article  CAS  PubMed  Google Scholar 

  138. Cooke JD, Thomas JS. Forearm oscillation during cooling of the dentate mucleus in the monkey. Can J Physiol Pharmacol. 1976;54(4):430–6.

    Article  CAS  PubMed  Google Scholar 

  139. Vilis T, Hore J. Effects of changes in mechanical state of limb on cerebellar intention tremor. J Neurophysiol. 1977;40(5):1214–24.

    Article  CAS  PubMed  Google Scholar 

  140. Flament D, Hore J. Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol. 1986;55(6):1221–33.

    Article  CAS  PubMed  Google Scholar 

  141. Monzée J, Drew T, Smith AM. Effects of muscimol inactivation of the cerebellar nuclei on precision grip. J Neurophysiol. 2004;91(3):1240–9.

    Article  PubMed  Google Scholar 

  142. Flumerfelt BA, Otabe S, Courville J. Distinct projections to the red nucleus from the dentate and interposed nuclei in the monkey. Brain Res. 1973;50(2):408–14.

    Article  CAS  PubMed  Google Scholar 

  143. Walberg F, Dietrichs E, Nordby T. The origin and termination of the dentatorubral fibres in the cat as studied with retrograde and anterograde transport of peroxidase labelled lectin. Exp Brain Res. 1986;63(2):294–300.

    Article  CAS  PubMed  Google Scholar 

  144. Carrea RME, Mettler FA. Function of the primate brachium conjunctivum and related structures. J Comp Neurol. 1955;102(1):151–322.

    Article  CAS  PubMed  Google Scholar 

  145. Mai N, Bolsinger P, Avarello M, Diener HC, Dichgans J. Control of isometric finger force in patients with cerebellar disease. Brain: A. J Neurol. 1988;111(Pt 5):973–98.

    Google Scholar 

  146. Müller F, Dichgans J. Impairments of precision grip in two patients with acute unilateral cerebellar lesions: A simple parametric test for clinical use. Neuropsychologia. 1994;32(2):265–9.

    Article  PubMed  Google Scholar 

  147. Serrien DJ, Wiesendanger M. Role of the cerebellum in tuning anticipatory and reactive grip force responses. J Cogn Neurosci. 1999;11(6):672–81.

    Article  CAS  PubMed  Google Scholar 

  148. Fellows SJ, Ernst J, Schwarz M, Töpper R, Noth J. Precision grip deficits in cerebellar disorders in man. Clin Neurophysiol. 2001;112(10):1793–802.

    Article  CAS  PubMed  Google Scholar 

  149. Anens E, Kristensen B, Häger-Ross C. Reactive grip force control in persons with cerebellar stroke: Effects on ipsilateral and contralateral hand. Exp Brain Res. 2010;203(1):21–30.

    Article  PubMed  Google Scholar 

  150. Carrea RME, Mettler FA. Physiologic consequences following extensive removals of the cerebellar cortex and deep cerebellar nuclei and effect of secondary cerebral ablations in the primate. J Comp Neurol. 1947;87(3):169–288.

    Article  CAS  PubMed  Google Scholar 

  151. Leiner HC, Leiner AL, Dow RS. Reappraising the cerebellum: What does the hindbrain contribute to the forebrain? Behav Neurosci. 1989;103(5):998–1008.

    Article  CAS  PubMed  Google Scholar 

  152. Brooks VB. How are “move” and “hold” programs matched? In: Bloedel JR, Dichigans J, Precht W, editors. Cerebellar Functions. Berlin: Springer-Verlag; 1984. p. 1–23.

    Google Scholar 

  153. Hore J, Vilis T. A Cerebellar-dependent efference copy mechanism for generating appropriate muscle responses to limb perturbations. In: Bloedel JR, Dichigans J, Precht W, editors. Cerebellar Functions. Berlin: Springer-Verlag; 1984. p. 24–35.

    Chapter  Google Scholar 

  154. Hartstone WG, Brown MH, Kelly GC, Tate WJ, Kuo S-H, Dwork AJ, Louis ED, Faust PL. Dentate Nucleus Neuronal Density: A Postmortem Study of Essential Tremor Versus Control Brains. Mov Disord: Off J Mov Disord Soc. 2021;36(4):995–9.

    Article  CAS  Google Scholar 

  155. van Kan PL, Gibson AR, Houk JC. Movement-related inputs to intermediate cerebellum of the monkey. J Neurophysiol. 1993;69(1):74–94.

    Article  PubMed  Google Scholar 

  156. van Kan PL, Horn KM, Gibson AR. The importance of hand use to discharge of interpositus neurones of the monkey. J Physiol. 1994;480(Pt 1):171–90.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Gibson AR, Horn KM, Van Kan PLE. Chapter 5 Grasping Cerebellar Function. In: Bennett KMB, Castiello U, editors. Advances in Psychology, vol. 105. North-Holland; 1994. p. 85–108.

    Google Scholar 

  158. Gibson AR, Horn KM, Stein JF, Van Kan PL. Activity of interpositus neurons during a visually guided reach. Can J Physiol Pharmacol. 1996;74(4):499–512.

    Article  CAS  PubMed  Google Scholar 

  159. Mason CR, Miller LE, Baker JF, Houk JC. Organization of reaching and grasping movements in the primate cerebellar nuclei as revealed by focal muscimol inactivations. J Neurophysiol. 1998;79(2):537–54.

    Article  CAS  PubMed  Google Scholar 

  160. Cooper SE, Martin JH, Ghez C. Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement. J Neurophysiol. 2000;84(4):1988–2000.

    Article  CAS  PubMed  Google Scholar 

  161. Martin JH, Cooper SE, Hacking A, Ghez C. Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control. J Neurophysiol. 2000;83(4):1886–99.

    Article  CAS  PubMed  Google Scholar 

  162. Low AYT, Thanawalla AR, Yip AKK, Kim J, Wong KLL, Tantra M, Augustine GJ, Chen AI. Precision of Discrete and Rhythmic Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Interposed Anterior Nucleus. Cell Rep. 2018;22(9):2322–33.

    Article  CAS  PubMed  Google Scholar 

  163. Ekerot CF, Garwicz M, Jörntell H. The control of forelimb movements by intermediate cerebellum. Prog Brain Res. 1997;114:423–9.

    Article  CAS  PubMed  Google Scholar 

  164. Becker MI, Person AL. Cerebellar Control of Reach Kinematics for Endpoint Precision. Neuron. 2019;103(2):335–348.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Thach WT, Schieber SH, Elble RH. Motor Programs: Trajectory Versus Stability. In: Bloedel JR, Dichigans J, Precht W, editors. Cerebellar Functions. Berlin: Springer-Verlag; 1984. p. 36–51.

    Chapter  Google Scholar 

  166. Hore J, Wild B, Diener HC. Cerebellar dysmetria at the elbow, wrist, and fingers. J Neurophysiol. 1991;65(3):563–71.

    Article  CAS  PubMed  Google Scholar 

  167. Berardelli A, Hallett M, Rothwell JC, Agostino R, Manfredi M, Thompson PD, Marsden CD. Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain: A. J Neurol. 1996;119(Pt 2):661–74.

    Google Scholar 

  168. Britton TC, Thompson PD, Day BL, Rothwell JC, Findley LJ, Marsden CD. Rapid wrist movements in patients with essential tremor. The critical role of the second agonist burst. Brain: A. J Neurol. 1994;117(Pt 1):39–47.

    Google Scholar 

  169. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.

    Article  CAS  PubMed  Google Scholar 

  170. Goodkin HP, Keating JG, Martin TA, Thach WT. Preserved simple and impaired compound movement after infarction in the territory of the superior cerebellar artery. Can J Neurol Sc Le J Can Des Sci Neurol. 1993;20(Suppl 3):S93–104.

    Article  Google Scholar 

  171. Milak MS, Shimansky Y, Bracha V, Bloedel JR. Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement. J Neurophysiol. 1997;78(2):939–59.

    Article  CAS  PubMed  Google Scholar 

  172. Elble RJ, Schieber MH, Thach WT. Activity of muscle spindles, motor cortex and cerebellar nuclei during action tremor. Brain Research. 1984;323(2):330–4.

    Article  CAS  PubMed  Google Scholar 

  173. Uno M, Kozlovskaya IB, Brooks VB. Effects of cooling interposed nuclei on tracking-task performance in monkeys. J Neurophysiol. 1973;36(6):996–1003.

    Article  CAS  PubMed  Google Scholar 

  174. Oscarsson O, Sjölund B. The ventral spino-olivocerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe. Exp Brain Res. 1977;28(5):469–86.

    CAS  PubMed  Google Scholar 

  175. Joseph JW, Shambes GM, Gibson JM, Welker W. Tactile projections to granule cells in caudal vermis of the rat’s cerebellum. Brain Behav Evol. 1978;15(2):141–9.

    Article  CAS  PubMed  Google Scholar 

  176. Coffman KA, Dum RP, Strick PL. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc Natl Acad Sci U S A. 2011;108(38):16068–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sengul G, Fu Y, Yu Y, Paxinos G. Spinal cord projections to the cerebellum in the mouse. Brain Struct Funct. 2015;220(5):2997–3009.

    Article  PubMed  Google Scholar 

  178. Pompeiano O, Andre P, Manzoni D. Spatiotemporal response properties of cerebellar Purkinje cells to animal displacement: A population analysis. Neuroscience. 1997;81(3):609–26.

    Article  CAS  PubMed  Google Scholar 

  179. Manzoni D, Pompeiano O, Bruschini L, Andre P. Neck input modifies the reference frame for coding labyrinthine signals in the cerebellar vermis: A cellular analysis. Neuroscience. 1999;93(3):1095–107.

    Article  CAS  PubMed  Google Scholar 

  180. Dash S, Catz N, Dicke PW, Thier P. Encoding of smooth-pursuit eye movement initiation by a population of vermal Purkinje cells. Cereb Cortex. 2012;22(4):877–91.

    Article  PubMed  Google Scholar 

  181. Muzzu T, Mitolo S, Gava GP, Schultz SR. Encoding of locomotion kinematics in the mouse cerebellum. PLoS One. 2018;13(9):e0203900.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Zobeiri OA, Cullen KE. Distinct representations of body and head motion are dynamically encoded by Purkinje cell populations in the macaque cerebellum. ELife. 2022;11:e75018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ferrier D, Turner WA. III. A record of experiments illustrative of the symptomatology and degenerations following lesions of the cerebellum and its peduncles and related structures in monkeys. Proc R Soc Lond. 1894;54(326–330):476–8.

    Google Scholar 

  184. Mauritz KH, Dichgans J, Hufschmidt A. Quantitative analysis of stance in late cortical cerebellar atrophy of the anterior lobe and other forms of cerebellar ataxia. Brain: A. J Neurol. 1979;102(3):461–82.

    CAS  Google Scholar 

  185. Silfverskiöld BP. Cortical cerebellar degeneration associated with a specific disorder of standing and locomotion. Acta Neurol Scand. 1977;55(4):257–72.

    Article  PubMed  Google Scholar 

  186. Mauritz KH, Schmitt C, Dichgans J. Delayed and enhanced long latency reflexes as the possible cause of postural tremor in late cerebellar atrophy. Brain: A. J Neurol. 1981;104(Pt 1):97–116.

    CAS  Google Scholar 

  187. Chambers WW, Sprague JM. Functional localization in the cerebellum. I. Organization in longitudinal cortico-nuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal. J Comp Neurol. 1955a;103(1):105–29.

    Article  CAS  PubMed  Google Scholar 

  188. Cheng MM, Tang G, Kuo S-H. Harmaline-induced tremor in mice: Videotape documentation and open questions about the model. Tremor Other Hyperkinetic Mov. 2013;3 tre-03-205-4668-1

  189. Goldberger ME, Growdon JH. Pattern of recovery following cerebellar deep nuclear lesions in monkeys. Exp Neurol. 1973;39(2):307–22.

    Article  CAS  PubMed  Google Scholar 

  190. Gadot R, Shofty B, Najera RA, Anand A, Banks G, Khan AB, LoPresti MA, Vanegas Arroyave N, Sheth SA. Case Report: Dual Target Deep Brain Stimulation With Externalized Programming for Post-traumatic Complex Movement Disorder. Front Neurosci. 2021;15:774073.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Moon D. Disorders of Movement due to Acquired and Traumatic Brain Injury. Curr Phys Med Rehabil Rep. 2022;10(4):311–23.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Rispal-Padel L, Cicirata F, Pons C. Cerebellar nuclear topography of simple and synergistic movements in the alert baboon (Papio papio). Exp Brain Res. 1982;47(3):365–80.

    Article  CAS  PubMed  Google Scholar 

  193. Rijntjes M, Buechel C, Kiebel S, Weiller C. Multiple somatotopic representations in the human cerebellum. Neuroreport. 1999;10(17):3653–8.

    Article  CAS  PubMed  Google Scholar 

  194. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Saadon-Grosman N, Angeli PA, DiNicola LM, Buckner RL. A third somatomotor representation in the human cerebellum. J Neurophysiol. 2022;128(4):1051–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Schultz W, Montgomery EB, Marini R. Proximal limb movements in response to microstimulation of primate dentate and interpositus nuclei mediated by brain-stem structures. Brain: A. J Neurol. 1979;102(1):127–46.

    CAS  Google Scholar 

  197. MacKay WA. Cerebellar nuclear activity in relation to simple movements. Exp Brain Res. 1988;71(1):47–58.

    Article  CAS  PubMed  Google Scholar 

  198. Goodkin HP, Thach WT. Cerebellar control of constrained and unconstrained movements I Nuclear Inactivation. J Neurophysiol. 2003;89(2):884–95.

    Article  CAS  PubMed  Google Scholar 

  199. Botterell EH, Fulton JF. Functional localization in the cerebellum of primates III. Lesions of hemispheres (neocerebellum). J Comp Neurol. 1938;69(1):63–87.

    Article  Google Scholar 

  200. Sprague JM, Chambers WW. Control of posture by reticular formation and cerebellum in the intract, anesthetized and unanesthetized and in the decerebrated cat. Am J Phys Anthropol. 1954;176(1):52–64.

    CAS  Google Scholar 

  201. Asanuma C, Thach WT, Jones EG. Cytoarchitectonic delineation of the ventral lateral thalamic region in the monkey. Brain Res. 1983b;286(3):219–35.

    Article  CAS  PubMed  Google Scholar 

  202. Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res. 1983c;286(3):237–65.

    Article  CAS  PubMed  Google Scholar 

  203. Kalil K. Projections of the cerebellar and dorsal column nuclei upon the thalamus of the rhesus monkey. J Comp Neurol. 1981;195(1):25–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Institutes of Health R01NS104423, R01NS118179, R01NS124854.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AF; Formal analysis and investigation: AF and SK; Resources: SK; Writing - Original Draft: AF; Writing - Review & Editing: AF and SK; Funding Acquisition: SK; Supervision: SK.

Corresponding author

Correspondence to Sheng-Han Kuo.

Ethics declarations

Ethical Approval

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanning, A., Kuo, SH. Clinical Heterogeneity of Essential Tremor: Understanding Neural Substrates of Action Tremor Subtypes. Cerebellum (2023). https://doi.org/10.1007/s12311-023-01551-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12311-023-01551-3

Keywords

Navigation