Skip to main content

Advertisement

Log in

Consensus Paper: Ataxic Gait

  • Consensus paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

A Correction to this article was published on 10 May 2022

This article has been updated

Abstract

The aim of this consensus paper is to discuss the roles of the cerebellum in human gait, as well as its assessment and therapy. Cerebellar vermis is critical for postural control. The cerebellum ensures the mapping of sensory information into temporally relevant motor commands. Mental imagery of gait involves intrinsically connected fronto-parietal networks comprising the cerebellum. Muscular activities in cerebellar patients show impaired timing of discharges, affecting the patterning of the synergies subserving locomotion. Ataxia of stance/gait is amongst the first cerebellar deficits in cerebellar disorders such as degenerative ataxias and is a disabling symptom with a high risk of falls. Prolonged discharges and increased muscle coactivation may be related to compensatory mechanisms and enhanced body sway, respectively. Essential tremor is frequently associated with mild gait ataxia. There is growing evidence for an important role of the cerebellar cortex in the pathogenesis of essential tremor. In multiple sclerosis, balance and gait are affected due to cerebellar and spinal cord involvement, as a result of disseminated demyelination and neurodegeneration impairing proprioception. In orthostatic tremor, patients often show mild-to-moderate limb and gait ataxia. The tremor generator is likely located in the posterior fossa. Tandem gait is impaired in the early stages of cerebellar disorders and may be particularly useful in the evaluation of pre-ataxic stages of progressive ataxias. Impaired inter-joint coordination and enhanced variability of gait temporal and kinetic parameters can be grasped by wearable devices such as accelerometers. Kinect is a promising low cost technology to obtain reliable measurements and remote assessments of gait. Deep learning methods are being developed in order to help clinicians in the diagnosis and decision-making process. Locomotor adaptation is impaired in cerebellar patients. Coordinative training aims to improve the coordinative strategy and foot placements across strides, cerebellar patients benefiting from intense rehabilitation therapies. Robotic training is a promising approach to complement conventional rehabilitation and neuromodulation of the cerebellum. Wearable dynamic orthoses represent a potential aid to assist gait. The panel of experts agree that the understanding of the cerebellar contribution to gait control will lead to a better management of cerebellar ataxias in general and will likely contribute to use gait parameters as robust biomarkers of future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

References

  1. Fine EJ, Ionita CC, Lohr L. The history of the development of the cerebellar examination. Semin Neurol. 2002;22(4):375–84. https://doi.org/10.1055/s-2002-36759.

    Article  PubMed  Google Scholar 

  2. Margolesky J, Bette S, Shpiner DS, Jordan EA, Dong C, Rundek T, … Singer C. Tandem gait abnormality in Parkinson disease: Prevalence and implication as a predictor of fall risk. Parkinsonism & Related Disorders, 2019;63, 83–87. https://doi.org/10.1016/j.parkreldis.2019.02.034

  3. D’Angelo E. Physiology of the cerebellum. In the cerebellum: fromeEmbryology to diagnostic investigations (pp. 85–108). Elsevier; 2018. https://doi.org/10.1016/b978-0-444-63956-1.00006-0

  4. Manto M, Habas C. Le cervelet, de l’anatomie et la physiologie à la clinique humaine. Springer-Verlag France, Paris ; 2013

  5. Buckley E, Mazzà C, McNeill A. A systematic review of the gait characteristics associated with Cerebellar Ataxia. Gait Posture. 2018;60:154–63. https://doi.org/10.1016/j.gaitpost.2017.11.024.

    Article  PubMed  Google Scholar 

  6. Serrao M, Ranavolo A, Casali C. Neurophysiology of gait. Handb Clin Neurol. 2018;154:299–303. https://doi.org/10.1016/B978-0-444-63956-1.00018-7.

    Article  PubMed  Google Scholar 

  7. Stolze H. Typical features of cerebellar ataxic gait. J Neurol Neurosurg Psychiatry. 2002;73(3):310–2. https://doi.org/10.1136/jnnp.73.3.310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, Mariën P, Nowak DA, Schmahmann JD, Serrao M, Steiner KM, Strupp M, Tilikete C, Timmann D, van Dun K. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum. 2016;15(3):369–91. https://doi.org/10.1007/s12311-015-0687-3.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Morton S, Bastian A. Mechanisms of cerebellar gait ataxia. The Cerebellum. 2007;6(1):79–86. https://doi.org/10.1080/14734220601187741.

    Article  PubMed  Google Scholar 

  10. Eltoukhy M, Kuenze C, Oh J, Jacopetti M, Wooten S, Signorile J. Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson’s disease. Med Eng Phys. 2017;44:1–7. https://doi.org/10.1016/j.medengphy.2017.03.007.

    Article  PubMed  Google Scholar 

  11. Suzuki M, Mitoma H, Yoneyama M. Quantitative analysis of motor status in Parkinson’s disease using wearable devices: from methodological considerations to problems in clinical applications. Parkinson’s disease. 2017;2017:6139716. https://doi.org/10.1155/2017/6139716.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mitoma H, Hayashi R, Yanagisawa N, Tsukagoshi H. Characteristics of parkinsonian and ataxic gaits: a study using surface electromyograms, angular displacements and floor reaction forces. J Neurol Sci. 2000;174(1):22–39. https://doi.org/10.1016/s0022-510x(99)00329-9.

    Article  CAS  PubMed  Google Scholar 

  13. Murdin L, Schilder AG. Epidemiology of balance symptoms and disorders in the community: a systematic review. Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 2015 ;36(3) :387–392. https://doi.org/10.1097/MAO.0000000000000691

  14. Dijkstra BW, Bekkers E, Gilat M, de Rond V, Hardwick RM, Nieuwboer A. Functional neuroimaging of human postural control: A systematic review with meta-analysis. Neurosci Biobehav Rev. 2020;115:351–62. https://doi.org/10.1016/j.neubiorev.2020.04.028.

    Article  PubMed  Google Scholar 

  15. Surgent OJ, Dadalko OI, Pickett KA, Travers BG. Balance and the brain: A review of structural brain correlates of postural balance and balance training in humans. Gait Posture. 2019;71:245–52. https://doi.org/10.1016/j.gaitpost.2019.05.011.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Drijkoningen D, Leunissen I, Caeyenberghs K, Hoogkamer W, Sunaert S, Duysens J, Swinnen SP. Regional volumes in brain stem and cerebellum are associated with postural impairments in young brain-injured patients. Hum Brain Mapp. 2015;36(12):4897–909. https://doi.org/10.1002/hbm.22958.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hocking DR, Birch RC, Bui QM, Menant JC, Lord SR, Georgiou-Karistianis N, Godler DE, Wen W, Hackett A, Rogers C, Trollor JN. Cerebellar volume mediates the relationship between FMR1 mRNA levels and voluntary step initiation in males with the premutation. Neurobiol Aging. 2017;50:5–12. https://doi.org/10.1016/j.neurobiolaging.2016.10.017.

    Article  CAS  PubMed  Google Scholar 

  18. Hüfner K, Binetti C, Hamilton DA, Stephan T, Flanagin VL, Linn J, Labudda K, Markowitsch H, Glasauer S, Jahn K, Strupp M, Brandt T. Structural and functional plasticity of the hippocampal formation in professional dancers and slackliners. Hippocampus. 2011;21(8):855–65. https://doi.org/10.1002/hipo.20801.

    Article  PubMed  Google Scholar 

  19. Manor B, Hu K, Zhao P, Selim M, Alsop D, Novak P, Lipsitz L, Novak V. Altered control of postural sway following cerebral infarction: a cross-sectional analysis. Neurology. 2010;74(6):458–64. https://doi.org/10.1212/WNL.0b013e3181cef647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park IS, Yoon JH, Kim N, Rhyu IJ. Regional cerebellar volume reflects static balance in elite female short-track speed skaters. Int J Sports Med. 2013;34(5):465–70. https://doi.org/10.1055/s-0032-1327649.

    Article  CAS  PubMed  Google Scholar 

  21. Takakusaki K. Functional neuroanatomy for posture and gait control. Journal of movement disorders, 2017 ;10(1), 1–17. https://doi.org/10.14802/jmd.16062

  22. Ferrarin M, Gironi M, Mendozzi L, Nemni R, Mazzoleni P, Rabuffetti M. Procedure for the quantitative evaluation of motor disturbances in cerebellar ataxic patients. Med Biol Eng Compu. 2005;43(3):349–56. https://doi.org/10.1007/BF02345812.

    Article  CAS  Google Scholar 

  23. Marquer A, Barbieri G, Pérennou D. The assessment and treatment of postural disorders in cerebellar ataxia: a systematic review. Ann Phys Rehabil Med. 2014;57(2):67–78. https://doi.org/10.1016/j.rehab.2014.01.002.

    Article  CAS  PubMed  Google Scholar 

  24. Chen TX, Yang C-Y, Willson G, Lin C-C, Kuo S-H. The efficacy and safety of transcranial direct current stimulation for cerebellar ataxia: A systematic review and meta-analysis. The Cerebellum. 2021;20(1):124–33. https://doi.org/10.1007/s12311-020-01181-z.

    Article  CAS  PubMed  Google Scholar 

  25. Farinelli V, Palmisano C, Marchese SM, Strano CMM, D’Arrigo S, Pantaleoni C, Ardissone A, Nardocci N, Esposti R, Cavallari P. Postural control in children with cerebellar ataxia. Appl Sci. 2020;10(5):1606. https://doi.org/10.3390/app10051606.

    Article  CAS  Google Scholar 

  26. Ouchi Y, Okada H, Yoshikawa E, Futatsubashi M, Nobezawa S. Absolute changes in regional cerebral blood flow in association with upright posture in humans: an orthostatic PET study. J Nucl Med. 2001;42(5):707–12.

    CAS  PubMed  Google Scholar 

  27. Prosperini L, Sbardella E, Raz E, Cercignani M, Tona F, Bozzali M, Petsas N, Pozzilli C, Pantano P. Multiple sclerosis: white and gray matter damage associated with balance deficit detected at static posturography. Radiology. 2013;268(1):181–9. https://doi.org/10.1148/radiol.13121695.

    Article  PubMed  Google Scholar 

  28. Sullivan EV, Rose J, Pfefferbaum A. Physiological and focal cerebellar substrates of abnormal postural sway and tremor in alcoholic women. Biol Psychiat. 2010;67(1):44–51. https://doi.org/10.1016/j.biopsych.2009.08.008.

    Article  PubMed  Google Scholar 

  29. Schöberl F, Feil K, Xiong G, Bartenstein P, la Fougére C, Jahn K, Brandt T, Strupp M, Dieterich M, Zwergal A. Pathological ponto-cerebello-thalamo-cortical activations in primary orthostatic tremor during lying and stance. Brain. 2016;140(1):83–97. https://doi.org/10.1093/brain/aww268.

    Article  Google Scholar 

  30. Drijkoningen D, Caeyenberghs K, Leunissen I, Vander Linden C, Leemans A, Sunaert S, Duysens J, Swinnen SP. Training-induced improvements in postural control are accompanied by alterations in cerebellar white matter in brain injured patients. NeuroImage Clinical. 2014;7:240–51. https://doi.org/10.1016/j.nicl.2014.12.006.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Taubert M, Draganski B, Anwander A, Müller K, Horstmann A, Villringer A, Ragert P. Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J Neurosci. 2010;30(35):11670–7. https://doi.org/10.1523/JNEUROSCI.2567-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rogge AK, Röder B, Zech A, Nagel V, Hollander K, Braumann KM, Hötting K. Balance training improves memory and spatial cognition in healthy adults. Sci Rep. 2017;7(1):5661. https://doi.org/10.1038/s41598-017-06071-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grillner S. The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci. 2003;4(7):573–86. https://doi.org/10.1038/nrn1137.

    Article  CAS  PubMed  Google Scholar 

  34. Eccles JC, Ito M, Szentagothai J. The cerebellum as a neuronal machine. Berlin: Springer Verlag, 1967.

  35. Marr D. A theory of cerebellar cortex. J Physiol. 1969;202(2):437–70. https://doi.org/10.1113/jphysiol.1969.sp008820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10(1–2):25–61. https://doi.org/10.1016/0025-5564(71)90051-4.

    Article  Google Scholar 

  37. Ito M. Mechanisms of motor learning in the cerebellum. Brain Res. 2000;886(1–2):237–45. https://doi.org/10.1016/s0006-8993(00)03142-5.

    Article  CAS  PubMed  Google Scholar 

  38. Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33(3):253–8. https://doi.org/10.1016/0304-3940(82)90380-9.

    Article  CAS  PubMed  Google Scholar 

  39. Medina JF, Nores WL, Ohyama T, Mauk MD. Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol. 2000;10(6):717–24. https://doi.org/10.1016/s0959-4388(00)00154-9.

    Article  CAS  PubMed  Google Scholar 

  40. Diedrichsen J, King M, Hernandez-Castillo C, Sereno M, Ivry RB. Universal transform or multiple functionality? Understanding the contribution of the human cerebellum across task domains. Neuron. 2019;102(5):918–28. https://doi.org/10.1016/j.neuron.2019.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science (New York, NY). 1996;272(5261):545–7. https://doi.org/10.1126/science.272.5261.545.

    Article  CAS  PubMed  Google Scholar 

  42. Bower JM. Control of sensory data acquisition. Int Rev Neurobiol. 1997;41:489–513. https://doi.org/10.1016/s0074-7742(08)60367-0.

    Article  CAS  PubMed  Google Scholar 

  43. Courchesne E, Allen G. Prediction and preparation, fundamental functions of the cerebellum. Learning & memory (Cold Spring Harbor, N.Y.), 1997;4(1), 1–35. https://doi.org/10.1101/lm.4.1.1

  44. Ito M. Bases and implications of learning in the cerebellum–adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109. https://doi.org/10.1016/S0079-6123(04)48009-1.

    Article  PubMed  Google Scholar 

  45. Mauk MD, Medina JF, Nores WL, Ohyama T. Cerebellar function: coordination, learning or timing? Current biology : CB. 2000;10(14):R522–5. https://doi.org/10.1016/s0960-9822(00)00584-4.

    Article  CAS  PubMed  Google Scholar 

  46. Pisotta I, Molinari M. Cerebellar contribution to feedforward control of locomotion. Frontiers in Human Neuroscience, 2014;8. https://doi.org/10.3389/fnhum.2014.00475

  47. Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci. 2002;978:302–17. https://doi.org/10.1111/j.1749-6632.2002.tb07576.x.

    Article  PubMed  Google Scholar 

  48. Lampl I, Yarom Y. Subthreshold oscillations of the membrane potential: a functional synchronizing and timing device. J Neurophysiol. 1993;70(5):2181–6. https://doi.org/10.1152/jn.1993.70.5.2181.

    Article  CAS  PubMed  Google Scholar 

  49. Llinás R, Yarom Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol. 1981;315:549–67. https://doi.org/10.1113/jphysiol.1981.sp013763.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Llinás R, Yarom Y. Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol. 1981;315:569–84. https://doi.org/10.1113/jphysiol.1981.sp013764.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Llinás R, Yarom Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol. 1986;376:163–82. https://doi.org/10.1113/jphysiol.1986.sp016147.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jacobson GA, Rokni D, Yarom Y. A model of the olivo-cerebellar system as a temporal pattern generator. Trends Neurosci. 2008;31(12):617–25. https://doi.org/10.1016/j.tins.2008.09.005.

    Article  CAS  PubMed  Google Scholar 

  53. Mathy A, Ho SS, Davie JT, Duguid IC, Clark BA, Häusser M. Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron. 2009;62(3):388–99. https://doi.org/10.1016/j.neuron.2009.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berger DJ, Masciullo M, Molinari M, Lacquaniti F, d’Avella A. Does the cerebellum shape the spatiotemporal organization of muscle patterns? Insights from subjects with cerebellar ataxias. J Neurophysiol. 2020;123(5):1691–710. https://doi.org/10.1152/jn.00657.2018.

    Article  PubMed  Google Scholar 

  55. Martino G, Ivanenko YP, Serrao M, Ranavolo A, d’Avella A, Draicchio F, Conte C, Casali C, Lacquaniti F. Locomotor patterns in cerebellar ataxia. J Neurophysiol. 2014;112(11):2810–21. https://doi.org/10.1152/jn.00275.2014.

    Article  CAS  PubMed  Google Scholar 

  56. Kiehn O. Decoding the organization of spinal circuits that control locomotion. Nat Rev Neurosci. 2016;17(4):224–38. https://doi.org/10.1038/nrn.2016.9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. la Fougère C, Zwergal A, Rominger A, Förster S, Fesl G, Dieterich M, Brandt T, Strupp M, Bartenstein P, Jahn K. Real versus imagined locomotion: a [18F]-FDG PET-fMRI comparison. Neuroimage. 2010;50(4):1589–98. https://doi.org/10.1016/j.neuroimage.2009.12.060.

    Article  PubMed  Google Scholar 

  58. Jahn K, Deutschländer A, Stephan T, Strupp M, Wiesmann M, Brandt T. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage. 2004;22(4):1722–31. https://doi.org/10.1016/j.neuroimage.2004.05.017.

    Article  PubMed  Google Scholar 

  59. Jahn K, Deutschländer A, Stephan T, Kalla R, Wiesmann M, Strupp M, Brandt T. Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage. 2008;39(2):786–92. https://doi.org/10.1016/j.neuroimage.2007.09.047.

    Article  PubMed  Google Scholar 

  60. Wang C, Wai Y, Kuo B, Yeh YY, Wang J. Cortical control of gait in healthy humans: an fMRI study. Journal of neural transmission (Vienna, Austria : 1996), 2008 ;115(8) :1149–1158. https://doi.org/10.1007/s00702-008-0058-z

  61. Wagner J, Stephan T, Kalla R, Brückmann H, Strupp M, Brandt T, Jahn K. Mind the bend: cerebral activations associated with mental imagery of walking along a curved path. Exp Brain Res. 2008;191(2):247–55. https://doi.org/10.1007/s00221-008-1520-8.

    Article  PubMed  Google Scholar 

  62. Taube W, Mouthon M, Leukel C, Hoogewoud HM, Annoni JM, Keller M. Brain activity during observation and motor imagery of different balance tasks: an fMRI study. Cortex. 2015;64:102–14. https://doi.org/10.1016/j.cortex.2014.09.022.

    Article  PubMed  Google Scholar 

  63. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94. https://doi.org/10.1523/JNEUROSCI.1868-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hétu S, Grégoire M, Saimpont A, Coll MP, Eugène F, Michon PE, Jackson PL. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev. 2013;37(5):930–49. https://doi.org/10.1016/j.neubiorev.2013.03.017.

    Article  PubMed  Google Scholar 

  65. Crémers J, Dessoullières A, Garraux G. Hemispheric specialization during mental imagery of brisk walking. Hum Brain Mapp. 2012;33(4):873–82. https://doi.org/10.1002/hbm.21255.

    Article  PubMed  Google Scholar 

  66. van der Meulen M, Allali G, Rieger SW, Assal F, Vuilleumier P. The influence of individual motor imagery ability on cerebral recruitment during gait imagery. Hum Brain Mapp. 2014;35(2):455–70. https://doi.org/10.1002/hbm.22192.

    Article  PubMed  Google Scholar 

  67. Labriffe M, Annweiler C, Amirova LE, Gauquelin-Koch G, Ter Minassian A, Leiber L-M, Beauchet O, Custaud M-A, Dinomais M. Brain activity during mental imagery of gait versus gait-like plantar stimulation: a novel combined functional MRI paradigm to better understand cerebral gait control. Frontiers in Human Neuroscience, 2017 ;11. https://doi.org/10.3389/fnhum.2017.00106

  68. Allali G, van der Meulen M, Beauchet O, Rieger SW, Vuilleumier P, Assal F. The neural vasis of age-related changes in motor imagery of gait: An fMRI study. J Gerontol: Series A. 2013;69(11):1389–98. https://doi.org/10.1093/gerona/glt207.

    Article  Google Scholar 

  69. Manto M. Cerebellar Disorders. A practical approach to diagnosis and management. Cambridge University Press, Cambridge, UK ; 2010.

  70. Bastian AJ, Mink JW, Kaufman BA, Thach WT. Posterior vermal split syndrome. Ann Neurol. 1998;44(4):601–10. https://doi.org/10.1002/ana.410440405.

    Article  CAS  PubMed  Google Scholar 

  71. Na J, Sugihara I, Shinoda Y. The entire trajectories of single pontocerebellar axons and their lobular and longitudinal terminal distribution patterns in multiple aldolase C-positive compartments of the rat cerebellar cortex. J Comp Neurol. 2019;527(15):2488–511. https://doi.org/10.1002/cne.24685.

    Article  CAS  PubMed  Google Scholar 

  72. Wu HS, Sugihara I, Shinoda Y. Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol. 1999;411(1):97–118. https://doi.org/10.1002/(sici)1096-9861(19990816)411:1%3c97::aid-cne8%3e3.0.co;2-o.

    Article  CAS  PubMed  Google Scholar 

  73. Ilg W, Timmann D. Gait ataxia–specific cerebellar influences and their rehabilitation. Mov Disord. 2013;28(11):1566–75. https://doi.org/10.1002/mds.25558.

    Article  PubMed  Google Scholar 

  74. Stoodley CJ, Schmahmann JD. Functional topography of the human cerebellum. Handb Clin Neurol. 2018;154:59–70. https://doi.org/10.1016/B978-0-444-63956-1.00004-7.

    Article  PubMed  Google Scholar 

  75. Grimaldi G, Manto M. Clinical and Pathophysiological Features of Cerebellar Dysfunction. In Hyperkinetic Movement Disorders (pp. 257–278). Wiley-Blackwell; 2012. https://doi.org/10.1002/9781444346183.ch17

  76. Popa LS, Ebner TJ. Cerebellum, predictions and errors. Frontiers in Cellular Neuroscience, 2019;12. https://doi.org/10.3389/fncel.2018.00524

  77. Tanaka H, Ishikawa T, Kakei S. Neural Evidence of the Cerebellum as a State Predictor. Cerebellum (London, England). 2019;18(3):349–71. https://doi.org/10.1007/s12311-018-0996-4.

    Article  PubMed  Google Scholar 

  78. Tanaka H, Ishikawa T, Lee J, Kakei S. The Cerebro-Cerebellum as a Locus of Forward Model: A Review. Front Syst Neurosci. 2020;14:19. https://doi.org/10.3389/fnsys.2020.00019.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Molinari M. Sequencing. In: Gruol D., Koibuchi N., Manto M., Molinari M., Schmahmann J., Shen Y. (eds) Essentials of cerebellum and cerebellar disorders. Springer, Cham. 2016. https://doi.org/10.1007/978-3-319-24551-5_54

  80. Cabaraux P, Gandini J, Kakei S, Manto M, Mitoma H, Tanaka H. Dysmetria and Errors in Predictions: The role of internal forward model. Int J Mol Sci. 2020;21(18):6900. https://doi.org/10.3390/ijms21186900.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bareš M, Apps R, Avanzino L, Breska A, D’Angelo E, Filip P, Gerwig M, Ivry RB, Lawrenson CL, Louis ED, Lusk NA, Manto M, Meck WH, Mitoma H, Petter EA. Consensus paper: decoding the contributions of the cerebellum as a time machine. From neurons to clinical applications. The Cerebellum. 2018;18(2):266–86. https://doi.org/10.1007/s12311-018-0979-5.

    Article  Google Scholar 

  82. Friedemann HH, Noth J, Diener HC, Bacher M. Long latency EMG responses in hand and leg muscles: cerebellar disorders. J Neurol Neurosurg Psychiatry. 1987;50(1):71–7. https://doi.org/10.1136/jnnp.50.1.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jacobs JV, Horak FB (2007). Cortical control of postural responses. Journal of neural transmission (Vienna, Austria : 1996), 2007;114(10) :1339–1348. https://doi.org/10.1007/s00702-007-0657-0

  84. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, Hamida MB, Campanella G, Filla A, Schut L, Timann D, Honnorat J, Nighoghossian N, Manyam B. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci. 1997;145(2):205–11. https://doi.org/10.1016/s0022-510x(96)00231-6.

    Article  CAS  PubMed  Google Scholar 

  85. Schmahmann JD, Gardner R, MacMore J, Vangel MG. Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS. Mov Disord. 2009;24(12):1820–8. https://doi.org/10.1002/mds.22681.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ilg W, Fleszar Z, Schatton C, Hengel H, Harmuth F, Bauer P, Timmann D, Giese M, Schöls L, Synofzik M. Individual changes in preclinical spinocerebellar ataxia identified via increased motor complexity. Mov Disord. 2016;31(12):1891–900. https://doi.org/10.1002/mds.26835.

    Article  PubMed  Google Scholar 

  87. Velázquez-Pérez L, Rodriguez-Labrada R, González-Garcés Y, Arrufat-Pie E, Torres-Vega R, Medrano-Montero J, Ramirez-Bautista B, Vazquez-Mojena Y, Auburger G, Horak F, Ziemann U, Gomez CM. Prodromal spinocerebellar ataxia type 2 subjects have quantifiable gait and postural sway deficits. Mov Disord. 2021;36(2):471–80. https://doi.org/10.1002/mds.28343.

    Article  PubMed  Google Scholar 

  88. Rao AK, Louis ED. Ataxic gait in essential tremor: a disease-associated feature? Tremor and other hyperkinetic movements, 2019 ;9(0). https://doi.org/10.5334/tohm.507

  89. Straka H, Beck JC, Pastor AM, Baker R. Morphology and physiology of the cerebellar vestibulolateral lobe pathways linked to oculomotor function in the goldfish. Journal of Neurophysioly. 2006;96:1963–80.

    Article  Google Scholar 

  90. Nieuwenhuys R, Voogd J, Van Huijzen C. The human central nervous system. Springer, Berlin; Heidelberg ; 2018.

  91. Goldberg JM, Wilson VJ, Cullen KE, Angelaki DE, Broussard DM, Büttner-Ennever JA, Fukushima K, Minor LB. The vestibular system. A sixth sense. Oxford University Press; Oxford, New York ; 2012.

  92. Maklad A, Fritzsch B. Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Brain Res Dev Brain Res. 2003;140(2):223–36. https://doi.org/10.1016/s0165-3806(02)00609-0.

    Article  CAS  PubMed  Google Scholar 

  93. Newlands SD, Vrabec JT, Purcell IM, Stewart CM, Zimmerman BE, Perachio AA. Central projections of the saccular and utricular nerves in macaques. J Comp Neurol. 2003;466(1):31–47. https://doi.org/10.1002/cne.10876.

    Article  PubMed  Google Scholar 

  94. Voogd J, Gerrits NM, Ruigrok TJ. Organization of the vestibulocerebellum. Ann N Y Acad Sci. 1996;781:553–79. https://doi.org/10.1111/j.1749-6632.1996.tb15728.x.

    Article  CAS  PubMed  Google Scholar 

  95. Barmack NH, Baughman RW, Eckenstein FP. Cholinergic innervation of the cerebellum of rat, rabbit, cat, and monkey as revealed by choline acetyltransferase activity and immunohistochemistry. J Comp Neurol. 1992;317(3):233–49. https://doi.org/10.1002/cne.903170303 (PMID: 1577998).

    Article  CAS  PubMed  Google Scholar 

  96. Voogd J, Ruigrok TJH. Cerebellum and Precerebellar Nuclei. In: Mai, J.K., Paxinos, G. (eds) The human nervous system (3rd Edition), Academic Press; 2012. pp 471–545. https://doi.org/10.1016/B978-0-12-374236-0.10015-X

  97. McCall AA, Miller DM, Yates BJ. Descending Influences on Vestibulospinal and Vestibulosympathetic Reflexes. Front Neurol. 2017;8:112. https://doi.org/10.3389/fneur.2017.00112.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Shinoda Y, Sugiuchi Y, Izawa Y, Hata Y. Long descending motor tract axons and their control of neck and axial muscles. Prog Brain Res. 2006;151:527–63. https://doi.org/10.1016/S0079-6123(05)51017-3.

    Article  PubMed  Google Scholar 

  99. Sathyamurthy A, Barik A, Dobrott CI, Matson K, Stoica S, Pursley R, Chesler AT, Levine AJ. Cerebellospinal neurons regulate motor performance and motor learning. Cell Rep. 2020;31(6):107595. https://doi.org/10.1016/j.celrep.2020.107595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Noda H, Sugita S, Ikeda Y. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol. 1990;302:330–48.

    Article  CAS  PubMed  Google Scholar 

  101. Batton RR 3rd, Jayaraman A, Ruggiero D, Carpenter MB. Fastigial efferent projections in the monkey: an autoradiographic study. J Comp Neurol. 1977;174(2):281–305. https://doi.org/10.1002/cne.901740206.

    Article  PubMed  Google Scholar 

  102. Fukushima K, Peterson BW, Uchino Y, Coulter JD, Wilson VJ. Direct fastigiospinal fibers in the cat. Brain Res. 1977;126(3):538–42. https://doi.org/10.1016/0006-8993(77)90604-7.

    Article  CAS  PubMed  Google Scholar 

  103. Blazquez PM, Hirata Y, Pastor AM. Functional organization of cerebellar feed-back loops and plasticity of influences on vestibular function. In the senses: a comprehensive reference (pp. 389–413). Elsevier; 2020 https://doi.org/10.1016/b978-0-12-809324-5.24222-3

  104. Strupp M, Brandt T, Dieterich M. Vertigo and dizziness - common complaints, 3rd ed. London: SpringerNature ; 2021

  105. Lisberger SG, Miles FA, Zee DS. Signals used to compute errors in monkey vestibuloocular reflex: possible role of flocculus. J Neurophysiol. 1984;52(6):1140–53. https://doi.org/10.1152/jn.1984.52.6.1140.

    Article  CAS  PubMed  Google Scholar 

  106. Zee DS, Yamazaki A, Butler PH, Gücer G. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol. 1981;46(4):878–99. https://doi.org/10.1152/jn.1981.46.4.878.

    Article  CAS  PubMed  Google Scholar 

  107. Yacovino DA, Akly MP, Luis L, Zee DS. The floccular syndrome: dynamic changes in eye movements and vestibulo-ocular reflex in isolated infarction of the cerebellar flocculus. Cerebellum (London, England). 2018;17(2):122–31. https://doi.org/10.1007/s12311-017-0878-1.

    Article  CAS  PubMed  Google Scholar 

  108. Kremmyda O, Kirchner H, Glasauer S, Brandt T, Jahn K, Strupp M. False-positive head-impulse test in cerebellar ataxia. Front Neurol. 2012;3:162. https://doi.org/10.3389/fneur.2012.00162.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Thurston SE, Leigh RJ, Abel LA, Dell’Osso LF. Hyperactive vestibulo-ocular reflex in cerebellar degeneration: pathogenesis and treatment. Neurology. 1987;37(1):53–7. https://doi.org/10.1212/wnl.37.1.53.

    Article  CAS  PubMed  Google Scholar 

  110. Belton T, McCrea RA. Role of the cerebellar flocculus region in cancellation of the VOR during passive whole body rotation. J Neurophysiol. 2000;84(3):1599–613. https://doi.org/10.1152/jn.2000.84.3.1599.

    Article  CAS  PubMed  Google Scholar 

  111. Lee SU, Choi JY, Kim HJ, Park JJ, Zee DS, Kim JS. Impaired tilt suppression of post-rotatory nystagmus and cross-coupled head-shaking nystagmus in cerebellar lesions: image mapping study. Cerebellum (London, England). 2017;16(1):95–102. https://doi.org/10.1007/s12311-016-0772-2.

    Article  PubMed  Google Scholar 

  112. Wiest G, Deecke L, Trattnig S, Mueller C. Abolished tilt suppression of the vestibulo-ocular reflex caused by a selective uvulo-nodular lesion. Neurology. 1999;52(2):417–9. https://doi.org/10.1212/wnl.52.2.417.

    Article  CAS  PubMed  Google Scholar 

  113. Szmulewicz DJ, Merchant SN, Halmagyi GM. Cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome: a histopathologic case report. Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology ; 2011 ;32(8) :e63–e65. https://doi.org/10.1097/MAO.0b013e318210b719

  114. Feil K, Strobl R, Schindler A, Krafczyk S, Goldschagg N, Frenzel C, Glaser M, Schöberl F, Zwergal A, Strupp M. What is behind cerebellar vertigo and dizziness? Cerebellum (London, England). 2019;18(3):320–32. https://doi.org/10.1007/s12311-018-0992-8.

    Article  CAS  PubMed  Google Scholar 

  115. Bouten CV, Koekkoek KT, Verduin M, Kodde R, Janssen JD. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans Biomed Eng. 1997;44(3):136–47. https://doi.org/10.1109/10.554760.

    Article  CAS  PubMed  Google Scholar 

  116. Godfrey A, Conway R, Meagher D, OLaighin G. Direct measurement of human movement by accelerometry. Med Eng Phys, 2008;30(10):1364–1386. https://doi.org/10.1016/j.medengphy.2008.09.005

  117. Mathie MJ, Coster AC, Lovell NH, Celler BG. Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol Meas. 2004;25(2):R1–20. https://doi.org/10.1088/0967-3334/25/2/r01.

    Article  PubMed  Google Scholar 

  118. Kavanagh JJ, Menz HB. Accelerometry: a technique for quantifying movement patterns during walking. Gait Posture. 2008;28(1):1–15. https://doi.org/10.1016/j.gaitpost.2007.10.010.

    Article  PubMed  Google Scholar 

  119. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public health reports (Washington, D.C. : 1974). 1985;100(2), 126–131.

  120. Dobkin BH. Wearable motion sensors to continuously measure real-world physical activities. Curr Opin Neurol. 2013;26(6):602–8. https://doi.org/10.1097/WCO.0000000000000026.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A. Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors (Basel, Switzerland). 2014;14(2):3362–94. https://doi.org/10.3390/s140203362.

    Article  PubMed  Google Scholar 

  122. Tao W, Liu T, Zheng R, Feng H. Gait analysis using wearable sensors. Sensors (Basel, Switzerland). 2012;12(2):2255–83. https://doi.org/10.3390/s120202255.

    Article  PubMed  Google Scholar 

  123. Marschollek M, Goevercin M, Wolf KH, Song B, Gietzelt M, Haux R, Steinhagen-Thiessen E. A performance comparison of accelerometry-based step detection algorithms on a large, non-laboratory sample of healthy and mobility-impaired persons. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2008;2008:1319–22. https://doi.org/10.1109/IEMBS.2008.4649407.

    Article  Google Scholar 

  124. Ying H, Silex C, Schnitzer A, Leonhardt S, Schiek M. Automatic step detection in the accelerometer signal. In 4th international workshop on wearable and implantable body sensor networks (BSN 2007) (pp. 80–85). Springer Berlin Heidelberg ; 2007. https://doi.org/10.1007/978-3-540-70994-7_14

  125. Brodie MA, Coppens MJ, Lord SR, Lovell NH, Gschwind YJ, Redmond SJ, Del Rosario MB, Wang K, Sturnieks DL, Persiani M, Delbaere K. Wearable pendant device monitoring using new wavelet-based methods shows daily life and laboratory gaits are different. Med Biol Eng Compu. 2016;54(4):663–74. https://doi.org/10.1007/s11517-015-1357-9.

    Article  Google Scholar 

  126. Del Din S, Godfrey A, Galna B, Lord S, Rochester L. Free-living gait characteristics in ageing and Parkinson’s disease: impact of environment and ambulatory bout length. J Neuroeng Rehabil. 2016;13(1):46. https://doi.org/10.1186/s12984-016-0154-5.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Knutsson E. An analysis of Parkinsonian gait. Brain : a journal of neurology. 1972;95(3):475–86. https://doi.org/10.1093/brain/95.3.475.

    Article  CAS  PubMed  Google Scholar 

  128. Weiss A, Herman T, Giladi N, Hausdorff JM. Objective assessment of fall risk in Parkinson’s disease using a body-fixed sensor worn for 3 days. PLoS ONE. 2014;9(5):e96675. https://doi.org/10.1371/journal.pone.0096675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Weiss A, Herman T, Giladi N, Hausdorff JM. New evidence for gait abnormalities among Parkinson’s disease patients who suffer from freezing of gait: insights using a body-fixed sensor worn for 3 days. Journal of neural transmission (Vienna, Austria : 1996), 2015 ;122(3) :403–410. https://doi.org/10.1007/s00702-014-1279-y

  130. Shirai S, Yabe I, Takahashi-Iwata I, Matsushima M, Ito YM, Takakusaki K, Sasaki H. The responsiveness of triaxial accelerometer measurement of gait ataxia is higher than that of the scale for the assessment and rating of ataxia in the early stages of spinocerebellar degeneration. Cerebellum (London, England). 2019;18(4):721–30. https://doi.org/10.1007/s12311-019-01025-5.

    Article  PubMed  Google Scholar 

  131. Mitoma H, Yoneyama M, Orimo S. 24-hour recording of parkinsonian gait using a portable gait rhythmogram. Internal Medicine (Tokyo, Japan). 2010;49(22):2401–8. https://doi.org/10.2169/internalmedicine.49.3511.

    Article  PubMed  Google Scholar 

  132. Suzuki M, Yogo M, Morita M, Terashi H, Iijima M, Yoneyama M, Takada M, Utsumi H, Okuma Y, Hayashi A, Orimo S, Mitoma H. A proposal for new algorithm that defines gait-induced acceleration and gait cycle in daily Parkinsonian gait disorders. In wearable technologies. InTech ; 2018. https://doi.org/10.5772/intechopen.75483

  133. Yoneyama M, Mitoma H, Sanjo N, Higuma M, Terashi H, Yokota T. Ambulatory gait behavior in patients with dementia: a comparison with Parkinson’s disease. IEEE Trans Neural Syst Rehabil Eng. 2016;24(8):817–26. https://doi.org/10.1109/TNSRE.2015.2477856.

    Article  PubMed  Google Scholar 

  134. Hallett M, Khoshbin S. A physiological mechanism of bradykinesia. Brain : a journal of neurology. 1980;103(2):301–14. https://doi.org/10.1093/brain/103.2.301.

    Article  CAS  PubMed  Google Scholar 

  135. Flowers KA. Visual “closed-loop” and “open-loop” characteristics of voluntary movement in patients with Parkinsonism and intention tremor. Brain : a journal of neurology. 1976;99(2):269–310. https://doi.org/10.1093/brain/99.2.269.

    Article  CAS  PubMed  Google Scholar 

  136. Molinari M, Leggio MG, Thaut MH. The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. Cerebellum (London, England). 2007;6(1):18–23. https://doi.org/10.1080/14734220601142886.

    Article  PubMed  Google Scholar 

  137. Molinari M, Masciullo M. The implementation of predictions during sequencing. Frontiers in Cellular Neuroscience, 2019;13. https://doi.org/10.3389/fncel.2019.00439

  138. Clark RA, Pua YH, Fortin K, Ritchie C, Webster KE, Denehy L, Bryant AL. Validity of the Microsoft kinect for assessment of postural control. Gait Posture. 2012;36(3):372–7. https://doi.org/10.1016/j.gaitpost.2012.03.033.

    Article  PubMed  Google Scholar 

  139. Rochester L, Galna B, Lord S, Mhiripiri D, Eglon G, Chinnery PF. Gait impairment precedes clinical symptoms in spinocerebellar ataxia type 6. Mov Disord. 2014;29(2):252–5. https://doi.org/10.1002/mds.25706.

    Article  PubMed  Google Scholar 

  140. Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A. Real-time human pose recognition in parts from single depth images. CVPR 2011. 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2011. https://doi.org/10.1109/cvpr.2011.5995316

  141. Mentiplay BF, Perraton LG, Bower KJ, Pua YH, McGaw R, Heywood S, Clark RA. Gait assessment using the Microsoft Xbox One Kinect: concurrent validity and inter-day reliability of spatiotemporal and kinematic variables. J Biomech. 2015;48(10):2166–70. https://doi.org/10.1016/j.jbiomech.2015.05.021.

    Article  PubMed  Google Scholar 

  142. Xu X, McGorry RW, Chou LS, Lin JH, Chang CC. Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking. Gait Posture. 2015;42(2):145–51. https://doi.org/10.1016/j.gaitpost.2015.05.002.

    Article  PubMed  Google Scholar 

  143. Clark RA, Pua YH, Oliveira CC, Bower KJ, Thilarajah S, McGaw R, Hasanki K, Mentiplay BF. Reliability and concurrent validity of the Microsoft Xbox One Kinect for assessment of standing balance and postural control. Gait Posture. 2015;42(2):210–3. https://doi.org/10.1016/j.gaitpost.2015.03.005.

    Article  PubMed  Google Scholar 

  144. Galna B, Barry G, Jackson D, Mhiripiri D, Olivier P, Rochester L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture. 2014;39(4):1062–8. https://doi.org/10.1016/j.gaitpost.2014.01.008.

    Article  PubMed  Google Scholar 

  145. Honda T, Mitoma H, Yoshida H, Bando K, Terashi H, Taguchi T, Miyata Y, Kumada S, Hanakawa T, Aizawa H, Yano S. Assessment and rating of motor cerebellar ataxias with the Kinect v2 depth sensor: extending our appraisal. Front Neurol. 2020;11:179. https://doi.org/10.3389/fneur.2020.00179.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Springer S, Yogev Seligmann G. Validity of the kinect for gait assessment: a focused review. Sensors (Basel, Switzerland). 2016;16(2):194. https://doi.org/10.3390/s16020194.

    Article  PubMed  Google Scholar 

  147. Vasco G, Gazzellini S, Petrarca M, Lispi ML, Pisano A, Zazza M, Della Bella G, Castelli E, Bertini E. Functional and gait assessment in children and adolescents affected by Friedreich’s ataxia: a one-year longitudinal study. PLoS ONE. 2016;11(9):e0162463. https://doi.org/10.1371/journal.pone.0162463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Summa S, Tartarisco G, Favetta M, Buzachis A, Romano A, Bernava GM, Sancesario A, Vasco G, Pioggia G, Petrarca M, Castelli E, Bertini E, Schirinzi T. Validation of low-cost system for gait assessment in children with ataxia. Comput Methods Programs Biomed. 2020;196:105705. https://doi.org/10.1016/j.cmpb.2020.105705.

    Article  CAS  PubMed  Google Scholar 

  149. Summa S, Schirinzi T, Bernava GM, Romano A, Favetta M, Valente EM, Bertini E, Castelli E, Petrarca M, Pioggia G, Vasco G. Development of SaraHome: A novel, well-accepted, technology-based assessment tool for patients with ataxia. Comput Methods Programs Biomed. 2020;188:105257. https://doi.org/10.1016/j.cmpb.2019.105257.

    Article  PubMed  Google Scholar 

  150. Ashizawa T, Öz G, Paulson HL. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol. 2018;14(10):590–605. https://doi.org/10.1038/s41582-018-0051-6.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Earhart GM, Bastian AJ. Selection and coordination of human locomotor forms following cerebellar damage. J Neurophysiol. 2001;85(2):759–69. https://doi.org/10.1152/jn.2001.85.2.759.

    Article  CAS  PubMed  Google Scholar 

  152. Conte C, Serrao M, Cuius L, Ranavolo A, Conforto S, Pierelli F, Padua L. Effect of restraining the base of support on the other biomechanical features in patients with cerebellar ataxia. Cerebellum (London, England). 2018;17(3):264–75. https://doi.org/10.1007/s12311-017-0897-y.

    Article  CAS  PubMed  Google Scholar 

  153. Mari S, Serrao M, Casali C, Conte C, Martino G, Ranavolo A, Coppola G, Draicchio F, Padua L, Sandrini G, Pierelli F. Lower limb antagonist muscle co-activation and its relationship with gait parameters in cerebellar ataxia. Cerebellum (London, England). 2014;13(2):226–36. https://doi.org/10.1007/s12311-013-0533-4.

    Article  CAS  PubMed  Google Scholar 

  154. Martino G, Ivanenko YP, d’Avella A, Serrao M, Ranavolo A, Draicchio F, Cappellini G, Casali C, Lacquaniti F. Neuromuscular adjustments of gait associated with unstable conditions. J Neurophysiol. 2015;114(5):2867–82. https://doi.org/10.1152/jn.00029.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fiori L, Ranavolo A, Varrecchia T, Tatarelli A, Conte C, Draicchio F, Castiglia SF, Coppola G, Casali C, Pierelli F, Serrao M. Impairment of global lower limb muscle coactivation during walking in cerebellar ataxias. The Cerebellum. 2020;19(4):583–96. https://doi.org/10.1007/s12311-020-01142-6.

    Article  PubMed  Google Scholar 

  156. Flament D, Hore J. Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol. 1986;55(6):1221–33. https://doi.org/10.1152/jn.1986.55.6.1221.

    Article  CAS  PubMed  Google Scholar 

  157. Hallett M, Shahani BT, Young RR. EMG analysis of patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1975;38(12):1163–9. https://doi.org/10.1136/jnnp.38.12.1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hore J, Wild B, Diener HC. Cerebellar dysmetria at the elbow, wrist, and fingers. J Neurophysiol. 1991;65(3):563–71. https://doi.org/10.1152/jn.1991.65.3.563.

    Article  CAS  PubMed  Google Scholar 

  159. Dominici N, Ivanenko YP, Cappellini G, d’Avella A, Mondì V, Cicchese M, Fabiano A, Silei T, Di Paolo A, Giannini C, Poppele RE, Lacquaniti F. Locomotor primitives in newborn babies and their development. Science (New York, N.Y.), 2011;334(6058), 997–999. https://doi.org/10.1126/science.1210617

  160. Ivanenko YP, Dominici N, Cappellini G, Di Paolo A, Giannini C, Poppele RE, Lacquaniti F. Changes in the spinal segmental motor output for stepping during development from infant to adult. J Neurosci. 2013;33(7):3025–36. https://doi.org/10.1523/JNEUROSCI.2722-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ranavolo A (2021). Principi di Elettromiografia di Superficie. Edizioni Universitarie Romane.

  162. Cheng Q, Wu M, Wu Y, Hu Y, Kwapong WR, Shi X, Fan Y, Yu X, He J, Wang Z. Weaker braking force, a new marker of worse gait stability in Alzheimer disease. Front Aging Neurosci. 2020;12:554168. https://doi.org/10.3389/fnagi.2020.554168.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Jin L, Lv W, Han G, Ni L, Sun D, Hu X, Cai H. Gait characteristics and clinical relevance of hereditary spinocerebellar ataxia on deep learning. Artif Intell Med. 2020;103:101794. https://doi.org/10.1016/j.artmed.2020.101794.

    Article  PubMed  Google Scholar 

  164. Wu Z, Jiang X, Zhong M, Shen B, Zhu J, Pan Y, Dong J, Xu P, Zhang W, Zhang L. Wearable sensors measure ankle joint changes of patients with Parkinson’s disease before and after acute levodopa challenge. Parkinson’s disease. 2020;2020:2976535. https://doi.org/10.1155/2020/2976535.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Wu Z, Zhong M, Jiang X, Shen B, Zhu J, Pan Y, Dong J, Yan J, Xu P, Zhang W, Gao Y, Zhang L. Can quantitative gait analysis be used to guide treatment of patients with different subtypes of Parkinson’s disease? Neuropsychiatr Dis Treat. 2020;16:2335–41. https://doi.org/10.2147/NDT.S266585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wu Z, Xu H, Zhu S, Gu R, Zhong M, Jiang X, Shen B, Zhu J, Pan Y, Dong J, Yan J, Zhang W, Zhang L. Gait analysis of old individuals with mild Parkinsonian signs and those individuals’ gait performance benefits little from levodopa. Risk Manag Healthc Policy. 2021;14:1109–18. https://doi.org/10.2147/RMHP.S291669.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Xie H, Wang Y, Tao S, Huang S, Zhang C, Lv Z. Wearable sensor-based daily life walking assessment of gait for distinguishing individuals with amnestic mild cognitive ompairment. Frontiers in Aging Neuroscience, 2019 ;11. https://doi.org/10.3389/fnagi.2019.00285

  168. Gao Q. et al. (2021) Validation of the JiBuEn® System in Measuring Gait Parameters. In: Ahram T., Taiar R., Groff F. (eds) Human interaction, emerging technologies and future applications IV. IHIET-AI 2021. advances in intelligent systems and computing, vol 1378. Springer, Cham. https://doi.org/10.1007/978-3-030-74009-2_67

  169. Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. The Lancet Neurology. 2004;3(5):291–304. https://doi.org/10.1016/S1474-4422(04)00737-9.

    Article  PubMed  Google Scholar 

  170. Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel JL, Brice A, Koenig M. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med. 1996;335(16):1169–75. https://doi.org/10.1056/NEJM199610173351601.

    Article  PubMed  Google Scholar 

  171. Luo L, Wang J, Lo RY, Figueroa KP, Pulst SM, Kuo PH, Perlman S, Wilmot G, Gomez CM, Schmahmann J, Paulson H, Shakkottai VG, Ying SH, Zesiewicz T, Bushara K, Geschwind M, Xia G, Subramony SH, Ashizawa T, Kuo SH. The initial symptom and motorpProgression in spinocerebellar ataxias. Cerebellum (London, England). 2017;16(3):615–22. https://doi.org/10.1007/s12311-016-0836-3.

    Article  PubMed  Google Scholar 

  172. Byrom B, Watson C, Doll H, Coons SJ, Eremenco S, Ballinger R, Mc Carthy M, Crescioni M, O’Donohoe P, Howry C, ePRO Consortium 2018 Selection of and evidentiary considerations for wearable devices and their measurements for use in regulatory decision making: recommendations from the ePRO Consortium Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research 21 6 631 639 https://doi.org/10.1016/j.jval.2017.09.012

  173. Scoles DR, Pulst SM. Antisense therapies for movement disorders. Mov Disord. 2019;34(8):1112–9. https://doi.org/10.1002/mds.27782.

    Article  PubMed  Google Scholar 

  174. Diener HC, Dichgans J. Cerebellar and spinocerebellar gait disorders. In: Bronstein AM, Brandt T, Woollacott, eds. Clinical disorders of posture and gait. London; 1996;147–155.

  175. Ilg W, Golla H, Thier P, Giese MA. Specific influences of cerebellar dysfunctions on gait. Brain : a journal of neurology. 2007;130(Pt 3):786–98. https://doi.org/10.1093/brain/awl376.

    Article  PubMed  Google Scholar 

  176. Fonteyn EM, Schmitz-Hübsch T, Verstappen CC, Baliko L, Bloem BR, Boesch S, Bunn L, Giunti P, Globas C, Klockgether T, Melegh B, Pandolfo M, Schöls L, Timmann D, van de Warrenburg BP. Prospective analysis of falls in dominant ataxias. Eur Neurol. 2013;69(1):53–7. https://doi.org/10.1159/000342907.

    Article  CAS  PubMed  Google Scholar 

  177. Serrao M, Pierelli F, Ranavolo A, Draicchio F, Conte C, Don R, Di Fabio R, LeRose M, Padua L, Sandrini G, Casali C. Gait pattern in inherited cerebellar ataxias. Cerebellum (London, England). 2012;11(1):194–211. https://doi.org/10.1007/s12311-011-0296-8.

    Article  PubMed  Google Scholar 

  178. Palliyath S, Hallett M, Thomas SL, Lebiedowska MK. Gait in patients with cerebellar ataxia. Mov Disord. 1998;13(6):958–64. https://doi.org/10.1002/mds.870130616.

    Article  CAS  PubMed  Google Scholar 

  179. Shah VV, Rodriguez-Labrada R, Horak FB, McNames J, Casey H, Hansson Floyd K, El-Gohary M, Schmahmann JD, Rosenthal LS, Perlman S, Velázquez-Pérez L, Gomez CM. (2021). Gait variability in spinocerebellar ataxia assessed using wearable inertial sensors. Movement disorders : official journal of the Movement Disorder Society, https://doi.org/10.1002/mds.28740. Advance online publication ; 2021. https://doi.org/10.1002/mds.28740

  180. Milne SC, Murphy A, Georgiou-Karistianis N, Yiu EM, Delatycki MB, Corben LA. Psychometric properties of outcome measures evaluating decline in gait in cerebellar ataxia: A systematic review. Gait Posture. 2018;61:149–62. https://doi.org/10.1016/j.gaitpost.2017.12.031.

    Article  PubMed  Google Scholar 

  181. Ilg W, Seemann J, Giese M, Traschütz A, Schöls L, Timmann D, Synofzik M. Real-life gait assessment in degenerative cerebellar ataxia: Toward ecologically valid biomarkers. Neurology. 2020;95(9):e1199–210. https://doi.org/10.1212/WNL.0000000000010176.

    Article  CAS  PubMed  Google Scholar 

  182. Schniepp R, Wuehr M, Schlick C, Huth S, Pradhan C, Dieterich M, Brandt T, Jahn K. Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J Neurol. 2014;261(1):213–23. https://doi.org/10.1007/s00415-013-7189-3.

    Article  PubMed  Google Scholar 

  183. Ilg W, Synofzik M, Brötz D, Burkard S, Giese MA, Schöls L. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology. 2009;73(22):1823–30. https://doi.org/10.1212/WNL.0b013e3181c33adf.

    Article  CAS  PubMed  Google Scholar 

  184. Ilg W, Schatton C, Schicks J, Giese MA, Schöls L, Synofzik M. Video game-based coordinative training improves ataxia in children with degenerative ataxia. Neurology. 2012;79(20):2056–60. https://doi.org/10.1212/WNL.0b013e3182749e67.

    Article  PubMed  Google Scholar 

  185. Jacobi H, Reetz K, du Montcel ST, Bauer P, Mariotti C, Nanetti L, Rakowicz M., Sulek, A., Durr, A., Charles, P., Filla, A., Antenora, A., Schöls, L., Schicks, J., Infante, J., Kang, J. S., Timmann, D., Di Fabio, R., Masciullo, M., Baliko, L., … Klockgether, T. (2013). Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. The Lancet. Neurology, 12(7), 650–658. https://doi.org/10.1016/S1474-4422(13)70104-2

  186. Maas RP, van Gaalen J, Klockgether T, van de Warrenburg BP. The preclinical stage of spinocerebellar ataxias. Neurology. 2015;85(1):96–103. https://doi.org/10.1212/WNL.0000000000001711.

    Article  PubMed  Google Scholar 

  187. Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS, Kremer B, Mariotti C, Melegh B, Pandolfo M, Rakowicz M, Ribai P, Rola R, Schöls L, Szymanski S, van de Warrenburg BP, … Fancellu R. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology, 2006;66(11):1717–1720. https://doi.org/10.1212/01.wnl.0000219042.60538.92

  188. Storey E. Presymptomatic features of spinocerebellar ataxias. The Lancet Neurology. 2013;12(7):625–6. https://doi.org/10.1016/S1474-4422(13)70116-9.

    Article  PubMed  Google Scholar 

  189. Tezenas du Montcel S, Durr A, Rakowicz M, Nanetti L, Charles P, Sulek A, Mariotti C, Rola R, Schols L, Bauer P, Dufaure-Garé I, Jacobi H, Forlani S, Schmitz-Hübsch T, Filla A, Timmann D, van de Warrenburg BP, Marelli C, Kang JS, Giunti P, … Golmard JL. Prediction of the age at onset in spinocerebellar ataxia type 1, 2, 3 and 6. Journal of medical genetics, 2014 ;51(7) :479–486. https://doi.org/10.1136/jmedgenet-2013-102200

  190. Serrao M, Casali C, Ranavolo A, Mari S, Conte C, Chini G, Leonardi L, Coppola G, DI Lorenzo C, Harfoush M, Padua L, Pierelli F (2017a). Use of dynamic movement orthoses to improve gait stability and trunk control in ataxic patients. European journal of physical and rehabilitation medicine, 53(5), 735–743. https://doi.org/10.23736/S1973-9087.17.04480-X

  191. Serrao M, Chini G, Casali C, Conte C, Rinaldi M, Ranavolo A, Marcotulli C, Leonardi L, Fragiotta G, Bini F, Coppola G, Pierelli F. Progression of gait ataxia in patients with degenerative cerebellar disorders: a 4-Year follow-up study. Cerebellum (London, England). 2017;16(3):629–37. https://doi.org/10.1007/s12311-016-0837-2.

    Article  CAS  PubMed  Google Scholar 

  192. Louis ED, Ottman R. How many people in the USA have essential tremor? Deriving a population estimate based on epidemiological data. Tremor and other hyperkinetic movements (New York, N.Y.), 2014 ;4 :259. https://doi.org/10.7916/D8TT4P4B

  193. Louis ED, Faust PL. Essential tremor within the broader context of other forms of cerebellar degeneration. Cerebellum (London, England). 2020;19(6):879–96. https://doi.org/10.1007/s12311-020-01160-4.

    Article  PubMed  Google Scholar 

  194. Dowd H, Zdrodowska MA, Radler KH, Cersonsky T, Rao AK, Huey ED, Cosentino S, Louis ED. Prospective longitudinal study of gait and balance in a cohort of elderly essential tremor patients. Front Neurol. 2020;11:581703. https://doi.org/10.3389/fneur.2020.581703.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Arkadir D, Louis ED. The balance and gait disorder of essential tremor: what does this mean for patients? Ther Adv Neurol Disord. 2013;6(4):229–36. https://doi.org/10.1177/1756285612471415.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Rao AK, Gillman A, Louis ED. Quantitative gait analysis in essential tremor reveals impairments that are maintained into advanced age. Gait Posture. 2011;34(1):65–70. https://doi.org/10.1016/j.gaitpost.2011.03.013.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Rao AK, Louis ED Timing control of gait: a study of essential tremor patients vs. age-matched controls. Cerebellum & ataxias ; 2016 ;3 :5. https://doi.org/10.1186/s40673-016-0043-5

  198. Louis ED, Galecki M, Rao AK. Four essential tremor cases with moderately impaired gait: how impaired can gait be in this disease?. Tremor and other hyperkinetic movements (New York, N.Y.), 2013 ;3, tre-03–200–4597–1. https://doi.org/10.7916/D8QV3K7G

  199. Louis ED, Rios E, Rao AK. Tandem gait performance in essential tremor: clinical correlates and association with midline tremors. Mov Disord. 2010;25(11):1633–8. https://doi.org/10.1002/mds.23144.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Schniepp R, Schlick C, Pradhan C, Dieterich M, Brandt T, Jahn K, Wuehr M. The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia. J Neurol. 2016;263(7):1409–17. https://doi.org/10.1007/s00415-016-8142-z.

    Article  PubMed  Google Scholar 

  201. Louis ED, Rao AK, Gerbin M. Functional correlates of gait and balance difficulty in essential tremor: balance confidence, near misses and falls. Gait Posture. 2012;35(1):43–7. https://doi.org/10.1016/j.gaitpost.2011.08.002.

    Article  PubMed  Google Scholar 

  202. Parisi SL, Héroux ME, Culham EG, Norman KE. Functional mobility and postural control in essential tremor. Arch Phys Med Rehabil. 2006;87(10):1357–64. https://doi.org/10.1016/j.apmr.2006.07.255.

    Article  PubMed  Google Scholar 

  203. Louis ED, Collins K, Rohl B, Morgan S, Robakis D, Huey ED, Cosentino S. Self-reported physical activity in essential tremor: Relationship with tremor, balance, and cognitive function. J Neurol Sci. 2016;366:240–5. https://doi.org/10.1016/j.jns.2016.05.034.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Zubair A, Cersonsky T, Kellner S, Huey ED, Cosentino S, Louis ED. What predicts mortality in essential tremor? a prospective, longitudinal study of elders. Front Neurol. 2018;9:1077. https://doi.org/10.3389/fneur.2018.01077.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Louis ED, Faust PL. Essential tremor: the most common form of cerebellar degeneration? Cerebellum & Ataxias. 2020;7:12. https://doi.org/10.1186/s40673-020-00121-1.

    Article  Google Scholar 

  206. van Asch P. Impact of mobility impairment in multiple sclerosis 2 - Patients’ perspectives. European neurological review, 2011;6(2), 115. https://doi.org/10.17925/enr.2011.06.02.115

  207. Kalron A, Givon U. Gait characteristics according to pyramidal, sensory and cerebellar EDSS subcategories in people with multiple sclerosis. J Neurol. 2016;263(9):1796–801. https://doi.org/10.1007/s00415-016-8200-6.

    Article  PubMed  Google Scholar 

  208. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–52. https://doi.org/10.1212/wnl.33.11.1444.

    Article  CAS  PubMed  Google Scholar 

  209. Salcı Y, Fil A, Keklicek H, Çetin B, Armutlu K, Dolgun A, Tuncer A, Karabudak R. Validity and reliability of the International Cooperative Ataxia Rating Scale (ICARS) and the Scale for the Assessment and Rating of Ataxia (SARA) in multiple sclerosis patients with ataxia. Mult Scler Relat Disord. 2017;18:135–40. https://doi.org/10.1016/j.msard.2017.09.032.

    Article  PubMed  Google Scholar 

  210. Brandstadter R, Ayeni O, Krieger SC, Harel NY, Escalon MX, Katz Sand I, Leavitt VM, Fabian MT, Buyukturkoglu K, Klineova S, Riley CS, Lublin FD, Miller AE, Sumowski JF. Detection of subtle gait disturbance and future fall risk in early multiple sclerosis. Neurology. 2020;94(13):e1395–406. https://doi.org/10.1212/WNL.0000000000008938.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Preziosa P, Rocca MA, Mesaros S, Pagani E, Drulovic J, Stosic-Opincal T, Dackovic J, Copetti M, Caputo D, Filippi M. Relationship between damage to the cerebellar peduncles and clinical disability in multiple sclerosis. Radiology. 2014;271(3):822–30. https://doi.org/10.1148/radiol.13132142.

    Article  PubMed  Google Scholar 

  212. Kalron A, Menascu S, Givon U, Dolev M, Achiron A. Is the walk ratio a window to the cerebellum in multiple sclerosis? A structural magnetic resonance imaging study. Eur J Neurol. 2019;27(3):454–60. https://doi.org/10.1111/ene.14119.

    Article  PubMed  Google Scholar 

  213. Ruggieri S, Bharti K, Prosperini L, Giannì C, Petsas N, Tommasin S, Giglio LD, Pozzilli C, Pantano P. A comprehensive approach to disentangle the effect of cerebellar damage on physical disability in multiple sclerosis. Frontiers in Neurology, 2020 ;11. https://doi.org/10.3389/fneur.2020.00529

  214. Cocozza S, Petracca M, Mormina E, Buyukturkoglu K, Podranski K, Heinig MM, Pontillo G, Russo C, Tedeschi E, Russo CV, Costabile T, Lanzillo R, Harel A, Klineova S, Miller A, Brunetti A, Morra VB, Lublin F, Inglese M. Cerebellar lobule atrophy and disability in progressive MS. J Neurol Neurosurg Psychiatry. 2017;88(12):1065–72. https://doi.org/10.1136/jnnp-2017-316448.

    Article  PubMed  Google Scholar 

  215. Tsagkas C, Magon S, Gaetano L, Pezold S, Naegelin Y, Amann M, Stippich C, Cattin P, Wuerfel J, Bieri O, Sprenger T, Kappos L, Parmar K. Spinal cord volume loss: A marker of disease progression in multiple sclerosis. Neurology. 2018;91(4):e349–58. https://doi.org/10.1212/WNL.0000000000005853.

    Article  PubMed  Google Scholar 

  216. Eshaghi A, Prados F, Brownlee WJ, Altmann DR, Tur C, Cardoso MJ, De Angelis F, van de Pavert SH, Cawley N, De Stefano N, Stromillo ML, Battaglini M, Ruggieri S, Gasperini C, Filippi M, Rocca MA, Rovira A, Sastre-Garriga J, Vrenken H, Leurs CE, … MAGNIMS study group. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann Neurol, 2018;83(2), 210–222. https://doi.org/10.1002/ana.25145

  217. Zesiewicz TA, Wilmot G, Kuo SH, Perlman S, Greenstein PE, Ying SH, Ashizawa T, Subramony SH, Schmahmann JD, Figueroa KP, Mizusawa H, Schöls L, Shaw JD, Dubinsky RM, Armstrong MJ, Gronseth GS, Sullivan KL. Comprehensive systematic review summary: treatment of cerebellar motor dysfunction and ataxia: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology. 2018;90(10):464–71. https://doi.org/10.1212/WNL.0000000000005055.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Prosperini L, Fanelli F, Petsas N, Sbardella E, Tona F, Raz E, Fortuna D, De Angelis F, Pozzilli C, Pantano P. Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board. Radiology. 2014;273(2):529–38. https://doi.org/10.1148/radiol.14140168.

    Article  PubMed  Google Scholar 

  219. Prosperini L, Petsas N, Raz E, Sbardella E, Tona F, Mancinelli CR, Pozzilli C, Pantano P. Balance deficit with opened or closed eyes reveals involvement of different structures of the central nervous system in multiple sclerosis. Mult Scler. 2014;20(1):81–90. https://doi.org/10.1177/1352458513490546.

    Article  PubMed  Google Scholar 

  220. Tona F, De Giglio L, Petsas N, Sbardella E, Prosperini L, Upadhyay N, Giannì C, Pozzilli C, Pantano P. Role of cerebellar dentate functional connectivity in balance deficits in patients with Multiple Sclerosis. Radiology. 2018;287(1):267–75. https://doi.org/10.1148/radiol.2017170311.

    Article  PubMed  Google Scholar 

  221. Bhatia KP, Bain P, Bajaj N, Elble RJ, Hallett M, Louis ED, Raethjen J, Stamelou M, Testa CM, Deuschl G. Consensus Statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Movement Disorders. 2017;33(1):75–87. https://doi.org/10.1002/mds.27121.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Thompson R, Bhatti DE, Hellman A, Doss SJ, Malgireddy K, Shou J, Srikanth-Mysore C, Bendi S, Bertoni JM, Torres-Russotto D. Ataxia prevalence in primary orthostatic tremor. Tremor and other hyperkinetic movements, 2020 ;10(1). https://doi.org/10.5334/tohm.570

  223. Whitney D, Bhatti D, Torres-Russotto D. Orthostatic Tremor: Pathophysiology Guiding Treatment. Current treatment options in neurology, 2018;20(9). https://doi.org/10.1007/s11940-018-0524-3

  224. Benito-León J, Louis ED, Manzanedo E, Hernández-Tamames JA, Álvarez-Linera J, Molina-Arjona JA, Matarazzo M, Romero JP, Domínguez-González C, Domingo-Santos Á, Sánchez-Ferro Á. Resting state functional MRI reveals abnormal network connectivity in orthostatic tremor. Medicine. 2016;95(29):e4310. https://doi.org/10.1097/md.0000000000004310.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Antelmi E, Rocchi L, Cocco A, Erro R, Latorre A, Liguori R, Plazzi G, Berardelli A, Rothwell J, Bhatia KP. Cerebellar and brainstem functional abnormalities in patients with primary orthostatic tremor. Mov Disord. 2018;33(6):1024–5. https://doi.org/10.1002/mds.27331.

    Article  PubMed  Google Scholar 

  226. Feil K, Böttcher N, Guri F, Krafczyk S, Schöberl F, Zwergal A, Strupp M. Long-term course of orthostatic tremor in serial posturographic measurement. Parkinsonism Relat Disord. 2015;21(8):905–10. https://doi.org/10.1016/j.parkreldis.2015.05.021.

    Article  CAS  PubMed  Google Scholar 

  227. Bhatti D, Thompson R, Xia Y, Hellman A, Schmaderer L, Suing K, McKune J, Penke C, Iske R, Roeder BJ, Siu K-C, Bertoni JM, Torres-Russotto D. Comprehensive, blinded assessment of balance in orthostatic tremor. Parkinsonism Relat Disord. 2018;47:22–5. https://doi.org/10.1016/j.parkreldis.2017.11.335.

    Article  PubMed  Google Scholar 

  228. Chien JH, Torres-Russotto D, Wang Z, Gui C, Whitney D, Siu K-C. The use of smartphone in measuring stance and gait patterns in patients with orthostatic tremor. PLoS ONE. 2019;14(7):e0220012. https://doi.org/10.1371/journal.pone.0220012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Möhwald K, Wuehr M, Schenkel F, Feil K, Strupp M, Schniepp R. The gait disorder in primary orthostatic tremor. J Neurol. 2020;267(S1):285–91. https://doi.org/10.1007/s00415-020-10177-y.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Wuehr M, Schlick C, Möhwald K, Schniepp R. Walking in orthostatic tremor modulates tremor features and is characterized by impaired gait stability. Scientific Reports, 2018 ;8(1). https://doi.org/10.1038/s41598-018-32526-8

  231. Vijiaratnam N, Sirisena D, Paul E, Bertram KL, Williams DR. Measuring disease progression and disability in orthostatic tremor. Parkinsonism Relat Disord. 2018;55:138–40. https://doi.org/10.1016/j.parkreldis.2018.06.014.

    Article  PubMed  Google Scholar 

  232. Setta F, Jacquy J, Hildebrand J, Manto M-U. Orthostatic tremor associated with cerebellar ataxia. J Neurol. 1998;245(5):299–302. https://doi.org/10.1007/s004150050222.

    Article  CAS  PubMed  Google Scholar 

  233. Benito-León J, Domingo-Santos Á. Orthostatic tremor: an update on a rare entity. Tremor and other hyperkinetic movements. 2016;6:411. https://doi.org/10.5334/tohm.324.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Schniepp R, Wuehr M, Neuhaeusser M, Kamenova M, Dimitriadis K, Klopstock T, Strupp M, Brandt T, Jahn K. Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure. Mov Disord. 2011;27(1):125–31. https://doi.org/10.1002/mds.23978.

    Article  PubMed  Google Scholar 

  235. Fonteyn EMR, Schmitz-Hübsch T, Verstappen CC, Baliko L, Bloem BR, Boesch S, Bunn L, Charles P, Dürr A, Filla A, Giunti P, Globas C, Klockgether T, Melegh B, Pandolfo M, De Rosa A, Schöls L, Timmann D, Munneke M, …van de Warrenburg BPC. Falls in spinocerebellar ataxias: results of the EuroSCA fall study. The Cerebellum, 2010;9(2):232–239. https://doi.org/10.1007/s12311-010-0155-z

  236. Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neuroscientist. 2004;10(3):247–59. https://doi.org/10.1177/1073858404263517.

    Article  PubMed  Google Scholar 

  237. Kelly G, Shanley J. Rehabilitation of ataxic gait following cerebellar lesions: applying theory to practise. Physiother Theory Pract. 2016;32(6):430–7. https://doi.org/10.1080/09593985.2016.1202364.

    Article  PubMed  Google Scholar 

  238. Bakker M, Allum JH, Visser JE, Grüneberg C, van de Warrenburg BP, Kremer BH, Bloem BR. Postural responses to multidirectional stance perturbations in cerebellar ataxia. Exp Neurol. 2006;202(1):21–35. https://doi.org/10.1016/j.expneurol.2006.05.008.

    Article  PubMed  Google Scholar 

  239. Horak FB, Diener HC. Cerebellar control of postural scaling and central set in stance. J Neurophysiol. 1994;72(2):479–93. https://doi.org/10.1152/jn.1994.72.2.479.

    Article  CAS  PubMed  Google Scholar 

  240. Mummel P, Timmann D, Krause UW, Boering D, Thilmann AF, Diener HC, Horak FB. Postural responses to changing task conditions in patients with cerebellar lesions. J Neurol Neurosurg Psychiatry. 1998;65(5):734–42. https://doi.org/10.1136/jnnp.65.5.734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci. 2006;26(36):9107–16. https://doi.org/10.1523/JNEUROSCI.2622-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Aprigliano F, Martelli D, Kang J, Kuo S-H, Kang UJ, Monaco V, Micera S, Agrawal SK. Effects of repeated waist-pull perturbations on gait stability in subjects with cerebellar ataxia. Journal of NeuroEngineering and Rehabilitation, 2019;16(1). https://doi.org/10.1186/s12984-019-0522-z

  243. Monaco V, Aprigliano F, Lofrumento M, Martelli D, Micera S, SunilAgrawal. Uncontrolled manifold analysis of the effects of a perturbation-based training on the organization of leg joint variance in cerebellar ataxia. Experimental brain research, 2021 ;239(2) :501–513. https://doi.org/10.1007/s00221-020-05965-x

  244. Synofzik M, Ilg W. Motor training in degenerative spinocerebellar disease: ataxia-specific improvements by intensive physiotherapy and exergames. Biomed Res Int. 2014;2014:583507. https://doi.org/10.1155/2014/583507.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Ilg W, Christensen A, Mueller OM, Goericke SL, Giese MA, Timmann D. Effects of cerebellar lesions on working memory interacting with motor tasks of different complexities. J Neurophysiol. 2013;110(10):2337–49. https://doi.org/10.1152/jn.00062.2013.

    Article  PubMed  Google Scholar 

  246. Grillner S, Wallén P. Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci. 1985;8:233–61. https://doi.org/10.1146/annurev.ne.08.030185.001313.

    Article  CAS  PubMed  Google Scholar 

  247. Dietz V, Zijlstra W, Duysens J. Human neuronal interlimb coordination during split-belt locomotion. Exp Brain Res. 1994;101(3):513–20. https://doi.org/10.1007/BF00227344.

    Article  CAS  PubMed  Google Scholar 

  248. Reisman DS, Block HJ, Bastian AJ. Interlimb coordination during locomotion: what can be adapted and stored? J Neurophysiol. 2005;94(4):2403–15. https://doi.org/10.1152/jn.00089.2005.

    Article  PubMed  Google Scholar 

  249. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain : a journal of neurology, 1996 ;119 ( Pt 4) :1183–1198. https://doi.org/10.1093/brain/119.4.1183

  250. Darmohray DM, Jacobs JR, Marques HG, Carey MR. Spatial and temporal cocomotor learning in mouse cerebellum. Neuron. 2019;102(1):217-231.e4. https://doi.org/10.1016/j.neuron.2019.01.038.

    Article  CAS  PubMed  Google Scholar 

  251. Earhart GM, Fletcher WA, Horak FB, Block EW, Weber KD, Suchowersky O, Melvill Jones G. Does the cerebellum play a role in podokinetic adaptation? Exp Brain Res. 2002;146(4):538–42. https://doi.org/10.1007/s00221-002-1238-y.

    Article  PubMed  Google Scholar 

  252. Hoogkamer W, Bruijn SM, Sunaert S, Swinnen SP, Van Calenbergh F, Duysens J. Adaptation and aftereffects of split-belt walking in cerebellar lesion patients. J Neurophysiol. 2015;114(3):1693–704. https://doi.org/10.1152/jn.00936.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Ilg W, Giese MA, Gizewski ER, Schoch B, Timmann D. The influence of focal cerebellar lesions on the control and adaptation of gait. Brain : a journal of neurology. 2008;131(Pt 11):2913–27. https://doi.org/10.1093/brain/awn246.

    Article  CAS  PubMed  Google Scholar 

  254. Roper JA, Brinkerhoff SA, Harrison BR, Schmitt AC, Roemmich RT, Hass CJ. Persons with essential tremor can adapt to new walking patterns. J Neurophysiol. 2019;122(4):1598–605. https://doi.org/10.1152/jn.00320.2019.

    Article  CAS  PubMed  Google Scholar 

  255. Statton MA, Vazquez A, Morton SM, Vasudevan E, Bastian AJ. Making S-sense of cerebellar contributions to perceptual and motor adaptation. Cerebellum (London, England). 2018;17(2):111–21. https://doi.org/10.1007/s12311-017-0879-0.

    Article  PubMed  Google Scholar 

  256. Hinton DC, Conradsson DM, Paquette C. Understanding human neural control of short-term gait adaptation to the split-belt treadmill. Neuroscience. 2020;451:36–50. https://doi.org/10.1016/j.neuroscience.2020.09.055.

    Article  CAS  PubMed  Google Scholar 

  257. Finley JM, Long A, Bastian AJ, Torres-Oviedo G. Spatial and temporal control contribute to step length asymmetry during split-belt adaptation and hemiparetic gait. Neurorehabil Neural Repair. 2015;29(8):786–95. https://doi.org/10.1177/1545968314567149.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Milne SC, Corben LA, Georgiou-Karistianis N, Delatycki MB, Yiu EM. Rehabilitation for individuals with genetic degenerative ataxia: a systematic review. Neurorehabil Neural Repair. 2017;31(7):609–22. https://doi.org/10.1177/1545968317712469.

    Article  PubMed  Google Scholar 

  259. Moreira R, Alves J, Matias A, Santos C. Smart and Assistive Walker – ASBGo: Rehabilitation Robotics: a smart–walker to assist ataxic patients. In robotics in Hhalthcare (pp. 37–68). Springer International Publishing ; 2019. https://doi.org/10.1007/978-3-030-24230-5_2

  260. Calabrò RS, Cacciola A, Bertè F, Manuli A, Leo A, Bramanti A, Naro A, Milardi D, Bramanti P. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurol Sci. 2016;37(4):503–14. https://doi.org/10.1007/s10072-016-2474-4.

    Article  PubMed  Google Scholar 

  261. Esquenazi A, Talaty M. Robotics for lower limb rehabilitation. Phys Med Rehabil Clin N Am. 2019;30(2):385–97. https://doi.org/10.1016/j.pmr.2018.12.012.

    Article  PubMed  Google Scholar 

  262. Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database of Systematic Reviews. 2017. https://doi.org/10.1002/14651858.cd006185.pub4

  263. Calabró RS, Sorrentino G, Cassio A, Mazzoli D, Andrenelli E, Bizzarini E, Campanini I, Carmignano SM, Cerulli S, Chisari C, Colombo V, Dalise S, Fundaró C, Gazzotti V, Mazzoleni D, Mazzucchelli M, Melegari C, Merlo A, Stampacchia G, … on behalf of the “CICERONE” Italian Consensus Conference on Robotic in Neurorehabilitation. (2021). Robotic-assisted gait rehabilitation following stroke: a systematic review of current guidelines and practical clinical recommendations [JD]. European Journal of Physical and Rehabilitation Medicine. https://doi.org/10.23736/S1973-9087.21.06887-8

  264. Kim HY, Shin J-H, Yang SP, Shin MA, Lee SH. Robot-assisted gait training for balance and lower extremity function in patients with infratentorial stroke: a single-blinded randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 2019 ;16(1). https://doi.org/10.1186/s12984-019-0553-5

  265. Belas dos Santos M, Barros de Oliveira C, dos Santos A, Garabello Pires C, Dylewski V, Arida RM. A comparative study of conventional physiotherapy versus robot-assisted gait training associated to physiotherapy in individuals with ataxia after stroke. Behav Neurol. 2018;2018:1–6. https://doi.org/10.1155/2018/2892065.

    Article  Google Scholar 

  266. Orrù G, Cesari V, Conversano C, Gemignani A. The clinical application of transcranial direct current stimulation in patients with cerebellar ataxia: a systematic review. Int J Neurosci. 2020;131(7):681–8. https://doi.org/10.1080/00207454.2020.1750399.

    Article  PubMed  Google Scholar 

  267. Portaro S, Russo M, Bramanti A, Leo A, Billeri L, Manuli A, La Rosa G, Naro A, Calabrò RS. The role of robotic gait training and tDCS in Friedrich ataxia rehabilitation. Medicine. 2019;98(8):e14447. https://doi.org/10.1097/md.0000000000014447.

    Article  PubMed  PubMed Central  Google Scholar 

  268. França C, de Andrade DC, Teixeira MJ, Galhardoni R, Silva V, Barbosa ER, Cury RG. Effects of cerebellar neuromodulation in movement disorders: A systematic review. Brain Stimul. 2018;11(2):249–60. https://doi.org/10.1016/j.brs.2017.11.015.

    Article  PubMed  Google Scholar 

  269. Wells H, Marquez J, Wakely L. Garment Therapy does not Improve Function in Children with Cerebral Palsy: A Systematic Review. Phys Occup Ther Pediatr. 2018;38(4):395–416. https://doi.org/10.1080/01942638.2017.1365323.

    Article  PubMed  Google Scholar 

  270. Elliott C, Reid S, Hamer P, Alderson J, Elliott B. Lycra(®) arm splints improve movement fluency in children with cerebral palsy. Gait Posture. 2011;33(2):214–9. https://doi.org/10.1016/j.gaitpost.2010.11.008.

    Article  PubMed  Google Scholar 

  271. Rennie DJ, Attfield SF, Morton RE, Polak FJ, Nicholson J. An evaluation of lycra garments in the lower limb using 3-D gait analysis and functional assessment (PEDI). Gait Posture. 2000;12(1):1–6. https://doi.org/10.1016/s0966-6362(00)00066-7.

    Article  CAS  PubMed  Google Scholar 

  272. Degelaen M, De Borre L, Buyl R, Kerckhofs E, De Meirleir L, Dan B. Effect of supporting 3D-garment on gait postural stability in children with bilateral spastic cerebral palsy. NeuroRehabilitation. 2016;39:175–81.

    Article  PubMed  Google Scholar 

  273. Romeo DM, Specchia A, Sini F, Bompard S, Di Polito A, Del Vecchio A, Ferrara P, Bernabei R, Mercuri E. Effects of Lycra suits in children with cerebral palsy. Eur J Paediatr Neurol. 2018;22(5):831–6. https://doi.org/10.1016/j.ejpn.2018.04.014.

    Article  PubMed  Google Scholar 

  274. Morton SM, Bastian AJ. Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. J Neurophysiol. 2003;89(4):1844–56. https://doi.org/10.1152/jn.00787.2002.

    Article  PubMed  Google Scholar 

  275. Caliandro P, Iacovelli C, Conte C, Simbolotti C, Rossini PM, Padua L, Casali C, Pierelli F, Reale G, Serrao M. Trunk-lower limb coordination pattern during gait in patients with ataxia. Gait Posture. 2017;57:252–7. https://doi.org/10.1016/j.gaitpost.2017.06.267.

    Article  PubMed  Google Scholar 

  276. Chini G, Ranavolo A, Draicchio F, Casali C, Conte C, Martino G, Leonardi L, Padua L, Coppola G, Pierelli F, Serrao M. Local stability of the trunk in patients with degenerative cerebellar ataxia during walking. Cerebellum (London, England). 2017;16(1):26–33. https://doi.org/10.1007/s12311-016-0760-6.

    Article  PubMed  Google Scholar 

  277. Adel O, Nafea Y, Hesham A, Gomaa W. Gait-based cerson identification using multiple inertial sensors. Proceedings of the 17th international conference on Informatics in control, automation and robotics. 17th rnternational conference on informatics in control, automation and robotics. 2020. https://doi.org/10.5220/0009791506210628

  278. Globas C, du Montcel ST, Baliko L, Boesch S, Depondt C, DiDonato S, Durr A, Filla A, Klockgether T, Mariotti C, Melegh B, Rakowicz M, Ribai P, Rola R, Schmitz-Hubsch T, Szymanski S, Timmann D, Van de Warrenburg BP, Bauer P, Schols L. Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Mov Disord. 2008;23(15):2232–8. https://doi.org/10.1002/mds.22288.

    Article  PubMed  Google Scholar 

  279. Renneboog B, Musch W, Vandemergel X, Manto MU, Decaux G. Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med. 2006;119(1):71.e1-71.e8. https://doi.org/10.1016/j.amjmed.2005.09.026.

    Article  CAS  PubMed  Google Scholar 

  280. Schmitz-Hübsch T, Coudert M, Tezenas du Montcel S, Giunti P, Labrum R, Dürr A, Ribai P, Charles P, Linnemann C, Schöls L, Rakowicz M, Rola R, Zdzienicka E, Fancellu R, Mariotti C, Baliko L, Melegh B, Filla A, Salvatore E, van de Warrenburg BP, … Klockgether T. Depression comorbidity in spinocerebellar ataxia. Movement disorders : official journal of the Movement Disorder Society, 2011;26(5):870–876. https://doi.org/10.1002/mds.23698

Download references

Author information

Authors and Affiliations

Authors

Contributions

Project administration: P.C., M.M.; Writing: all; Editing: all. All authors have read and agreed to the publication.

Corresponding author

Correspondence to Pierre Cabaraux.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

All co-authors provided consent to publication of the findings in medical journal.

Conflicts of interest

M. Strupp is Joint Chief Editor of the Journal of Neurology, Editor in Chief of Frontiers of Neuro-otology and Section Editor of F1000. He has received speaker’s honoraria from Abbott, Auris Medical, Biogen, Eisai, Grünenthal, GSK, Henning Pharma, Interacoustics, J&J, MSD, Otometrics, Pierre-Fabre, TEVA, UCB, and Viatris. He is a share holder and investor of IntraBio. He distributes “M-glasses” and “Positional vertigo App”. He acts as a consultant for Abbott, AurisMedical, Heel, IntraBio and Sensorion.

The other authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabaraux, P., Agrawal, S.K., Cai, H. et al. Consensus Paper: Ataxic Gait. Cerebellum 22, 394–430 (2023). https://doi.org/10.1007/s12311-022-01373-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01373-9

Keywords

Navigation