Skip to main content

Advertisement

Log in

Greater Disruption to Control of Voluntary Saccades in Autistic Disorder than Asperger’s Disorder: Evidence for Greater Cerebellar Involvement in Autism?

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

It remains unclear whether autism and Asperger’s disorder (AD) exist on a symptom continuum or are separate disorders with discrete neurobiological underpinnings. In addition to impairments in communication and social cognition, motor deficits constitute a significant clinical feature in both disorders. It has been suggested that motor deficits and in particular the integrity of cerebellar modulation of movement may differentiate these disorders. We used a simple volitional saccade task to comprehensively profile the integrity of voluntary ocular motor behaviour in individuals with high functioning autism (HFA) or AD, and included measures sensitive to cerebellar dysfunction. We tested three groups of age-matched young males with normal intelligence (full scale, verbal, and performance IQ estimates >70) aged between 11 and 19 years; nine with AD, eight with HFA, and ten normally developing males as the comparison group. Overall, the metrics and dynamics of the voluntary saccades produced in this task were preserved in the AD group. In contrast, the HFA group demonstrated relatively preserved mean measures of ocular motricity with cerebellar-like deficits demonstrated in increased variability on measures of response time, final eye position, and movement dynamics. These deficits were considered to be consistent with reduced cerebellar online adaptation of movement. The results support the notion that the integrity of cerebellar modulation of movement may be different in AD and HFA, suggesting potentially differential neurobiological substrates may underpin these complex disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fombonne E. The prevalence of autism. J Am Med Assoc. 2003;289:87–9.

    Article  Google Scholar 

  2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders IV-TR. 4th ed. Washington, DC: American Psychiatric Association Press; 2000.

    Google Scholar 

  3. Teitelbaum O, Benton T, Shah PK, Prince A, Kelly JL, Teitelbaum P. Eshkol-Wachman movement notation in diagnosis: the early detection of Asperger’s syndrome. Proc Natl Acad Sci USA. 2004;101:11909–14.

    Article  CAS  PubMed  Google Scholar 

  4. Landa R, Garrett-Mayer E. Development in infants with autism spectrum disorders: a prospective study. J Child Psychol Psychiatry. 2006;47:629–38.

    Article  PubMed  Google Scholar 

  5. Teitelbaum P, Teitelbaum O, Nye J, Fryman J, Maurer RG. Movement analysis in infancy may be useful for early diagnosis of autism. Proc Natl Acad Sci USA. 1998;95:13982–7.

    Article  CAS  PubMed  Google Scholar 

  6. Nayate A, Bradshaw JL, Rinehart NJ. Autism and Asperger’s disorder: are they movement disorders involving the cerebellum and/or basal ganglia? Brain Res Bull. 2005;67:327–34.

    Article  PubMed  Google Scholar 

  7. Rinehart NJ, Bellgrove MA, Tonge BJ, Brereton AV, Howells-Rankin D, Bradshaw JA. An examination of movement kinematics in young people with high-functioning autism and Asperger’s disorder: further evidence for a motor planning deficit. J Autism Dev Disord. 2006;36:757–67.

    Article  PubMed  Google Scholar 

  8. Rinehart NJ, Tonge BJ, Bradshaw JA, Iansek R, Enticott PG, McGinley J. Gait function in high functioning autism and Asperger’s disorder: evidence for basal-ganglia & cerebellar involvement? Eur Child Adolesc Psychiatry. 2006;15:256–64.

    Article  PubMed  Google Scholar 

  9. Rinehart NJ, Tonge BJ, Iansek R, McGinley J, Brereton AV, Enticott PG, et al. Gait function in newly diagnosed children with autism: cerebellar and basal ganglia related motor disorder. Dev Med Child Neurol. 2006;48:819–24.

    Article  PubMed  Google Scholar 

  10. Rosenbaum DA. Human motor control. London: Academic; 1991.

    Google Scholar 

  11. Salmond CH, de Haan M, Friston KJ, Gadian DG, Vargha-Khadem F. Invesigating individual differences in brain abnormalities in autism. Phil Trans R Soc Lond. 2003;358:405–13.

    Article  CAS  Google Scholar 

  12. Allen G, Courchesne E. Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. Am J Psychiatry. 2003;160:262–73.

    Article  PubMed  Google Scholar 

  13. Allen G, Muller RA, Courchesne E. Cerebellar function in autism: functional magnetic resonance image activation during a simple motor task. Biol Psychiatry. 2004;56:269–78.

    Article  PubMed  Google Scholar 

  14. Hallahan B, Daly EM, McAlonan G, Loth E, Toal F, O’Brien F, et al. Brain morphometry volume in autistic spectrum disorder: a magnetic resonance imaging study of adults. Psychol Med. 2009;39:337–46.

    Article  CAS  PubMed  Google Scholar 

  15. Kaufmann WE, Cooper KL, Mostofsky SH, Capone GT, Kates WR, Newschaffer CJ, et al. Specificity of cerebellar vermian abnormalities in autism: a quantitative magnetic resonance imaging study. J Child Neurol. 2003;18:463–70.

    Article  PubMed  Google Scholar 

  16. Courchesne E, Saitoh O, Yeung-Courchesne R, Press GA, Lincoln AJ, Haas RH, et al. Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. Am J Roentgenol. 1994;162:123–30.

    CAS  Google Scholar 

  17. Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, et al. A clinicopathological study of autism. Brain. 1998;121:889–905.

    Article  PubMed  Google Scholar 

  18. Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, et al. Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol. 2002;22:171–5.

    Article  PubMed  Google Scholar 

  19. Mostofsky SH, Powell SK, Simmonds DJ, Goldberg MC, Caffo B, Pekar JJ. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain. 2009;132:2413–25.

    Article  PubMed  Google Scholar 

  20. McAlonan M, Daly E, Kumari V, Critchley HD, Van Amelsvoort T, Suckling J, et al. Brain anatomy and sensorimotor gating in Asperger’s syndrome. Brain. 2002;127:1594–606.

    Article  Google Scholar 

  21. Catani M, Jones DK, Daly E, Embiricos N, Deeley Q, Pugliese L, et al. Altered cerebellar feedback projections in Asperger syndrome. Neuroimage. 2008;41:1184–91.

    Article  PubMed  Google Scholar 

  22. McAlonan GM, Cheung C, Cheung V, Wong N, Suckling J, Chua SE. Differential effects on white-matter systems in high-functioning autism and Asperger’s syndrome. Psychol Med. 2009;39:1885–93.

    Article  CAS  PubMed  Google Scholar 

  23. McAlonan GM, Suckling J, Wong N, Cheung V, Lienenkaemper N, Cheung C, et al. Distinct patterns of grey matter abnormality in high-functioning autism and Asperger’s syndrome. J Child Psychol Psychiatry. 2008;49:1287–95.

    Article  PubMed  Google Scholar 

  24. Qiu A, Adler M, Crocetti D, Miller M, Mostofsky SH. Basal ganglia shapes predict social, communication, and motor dysfunctions in boys with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2010;49:539–51.

    PubMed  Google Scholar 

  25. Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8:1491–3.

    Article  CAS  PubMed  Google Scholar 

  26. Leigh RJ, Zee DS. The neurology of eye movements. 4th ed. New York: Oxford University Press; 2006.

    Google Scholar 

  27. Takarae Y, Minshew NJ, Luna B, Krisky CM, Sweeney JA. Pursuit eye movement deficits in autism. Brain. 2004;127:2584–94.

    Article  PubMed  Google Scholar 

  28. Nowinski CV, Minshew NJ, Luna B, Takarae Y, Sweeney J. Oculomotor studies of cerebellar function in autism. Psychiatry Res. 2005;137:11–9.

    Article  PubMed  Google Scholar 

  29. Goldberg MC, Landa R, Lasker A, Cooper L, Zee DS. Evidence of normal cerebellar control of the vestibulo-ocular reflex (VOR) in children with high-functioning autism. J Autism Dev Disord. 2000;30:519–24.

    Article  CAS  PubMed  Google Scholar 

  30. Luna B, Doll SK, Hegedus SJ, Minshew NJ, Sweeney JA. Maturation of executive function in Autism. Biol Psychiatry. 2007;61:474–81.

    Article  PubMed  Google Scholar 

  31. Luna B, Minshew NJ, Garver KE, Lazar NA, Thulborn KR, Eddy WF, et al. Neocortical system abnormalities in autism: an fMRI study of spatial working memory. Neurology. 2002;59:834–40.

    CAS  PubMed  Google Scholar 

  32. Minshew NJ, Luna B, Sweeney JA. Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism. Neurology. 1999;52:917–22.

    CAS  PubMed  Google Scholar 

  33. Takarae Y, Minshew NJ, Luna B, Sweeney JA. Oculomotor abnormalities parallel cerebellar histopathology in autism. J Neurol Neurosurg Psychiatry. 2004;75:1359–61.

    Article  CAS  PubMed  Google Scholar 

  34. Olk B, Kingstone A, Olk B, Kingstone A. Why are antisaccades slower than prosaccades? A novel finding using a new paradigm. NeuroReport. 2003;14:151–5.

    Article  PubMed  Google Scholar 

  35. Hallett PE, Adams BD. The predictability of saccadic latency in a novel voluntary oculomotor task. Vis Res. 1980;20:329–39.

    Article  CAS  PubMed  Google Scholar 

  36. Munoz DP, Everling S. Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci. 2004;5:218–28.

    Article  CAS  PubMed  Google Scholar 

  37. Kleinhans N, Akshoomoff N, Delis DC. Executive functions in Autism and Asperger’s disorder: flexibility, fluency, and inhibition. Dev Neuropsychol. 2005;27:379–401.

    Article  PubMed  Google Scholar 

  38. Manjiviona J, Prior M. Neuropsychological profiles of children with Asperger syndrome and autism. Autism. 1999;3:327–56.

    Article  Google Scholar 

  39. Ozonoff S, Jensen J. Specific executive function profiles in three neurodevelopmental disorders. J Autism Dev Disord. 1999;29:171–7.

    Article  CAS  PubMed  Google Scholar 

  40. Rinehart NJ, Bradshaw JL, Brereton AV, Tonge BJ. A clinical and neurobehavioural review of high-functioning autism and Asperger’s disorder. Aust N Z J Psychiatry. 2002;36:762–70.

    Article  PubMed  Google Scholar 

  41. Verte S, Geurts HM, Roeyers H, Oosterlaan J, Sergeant JA. Executive functioning in children with autism and Tourette syndrome. Dev Psychopathol. 2005;17:415–45.

    Article  PubMed  Google Scholar 

  42. Goldberg MC, Lasker AG, Zee DS, Garth E, Tien A, Landa RJ. Deficits in the initiation of eye movements in the absence of a visual target in adolescents with high functioning autism. Neuropsychologia. 2002;40:2039–49.

    Article  CAS  PubMed  Google Scholar 

  43. Thakkar KN, Polli FE, Joseph RM, Tuch DS, Hadjikhani N, Barton JJ, et al. Response monitoring, repetitive behaviour and anterior cingulate abnormalities in autism spectrum disorders (ASD). Brain. 2008;131:2464–78.

    Article  PubMed  Google Scholar 

  44. Manoach D, Lindgren K, Barton J. Deficient saccadic inhibition in Asperger’s disorder and the social-emotional processing disorder. J Neurol Neurosurg Psychiatry. 2004;75:1719–26.

    Article  CAS  PubMed  Google Scholar 

  45. Robinson FR, Fuchs AF. The role of the cerebellum in voluntary eye movements. Annu Rev Neurosci. 2001;24:981–1004.

    Article  CAS  PubMed  Google Scholar 

  46. Takagi M, Zee DS, Tamargo RJ. Effect of dorsal cerebellar lesions on saccades and pursuit in monkeys. Society of Neuroscience Abstracts. 1996;22:1458.

    Google Scholar 

  47. Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19:10931–9.

    CAS  PubMed  Google Scholar 

  48. Ceravolo R, Fattori B, Nuti A, Dell’Agnello G, Cei G, Casani A, et al. Contribution of cerebellum and brainstem in the control of eye movement: evidence from a functional study in a clinical model. Acta Neurol Scand. 2002;105(1):32–9.

    Article  CAS  PubMed  Google Scholar 

  49. Fielding J, Corben L, Cremer P, Millist L, White O, Delatycki M. Disruption to higher order processes in Friedreich ataxia. Neuropsychologia. 2010;48:235–42.

    Article  PubMed  Google Scholar 

  50. Fahey MC, Cremer PD, Aw ST, Millist L, Todd MJ, White OB, et al. Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia. Brain. 2008;131:1035–45.

    Article  PubMed  Google Scholar 

  51. Reuter B, Jager M, Bottlender R, Kathmann N. Impaired action control in schizophrenia: the role of volitional saccade initiation. Neuropsychologia. 2007;45:1840–8.

    Article  PubMed  Google Scholar 

  52. Honda H. Idiosyncratic left-right asymmetries of saccadic latencies: examination in a gap paradigm. Vision Res. 2002;42:1437–45.

    Article  PubMed  Google Scholar 

  53. Enticott PG, Bradshaw JL, Iansek R, Tonge BJ, Rinehart NJ, Enticott PG, et al. Electrophysiological signs of supplementary-motor-area deficits in high-functioning autism but not Asperger syndrome: an examination of internally cued movement-related potentials. Dev Med Child Neurol. 2009;51:787–91.

    Article  PubMed  Google Scholar 

  54. Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.

    Article  CAS  PubMed  Google Scholar 

  55. Tonge BJ, Brereton AV, Gray KM, Einfeld SL. Behavioural and emotional disturbance in high-functioning autism and Asperger syndrome. Autism. 1999;3:117–30.

    Article  Google Scholar 

  56. Lebedev S, Van Gelder P, Tsui W. Square-root relations between main saccadic parameters. Invest Ophthalmol Vis Sci. 1996;37:2750–8.

    CAS  PubMed  Google Scholar 

  57. Bahill AT, Clark MR, Stark L. The main sequence, a tool for studying human eye movements. Mathematics Biosciences. 1975;24:191–204.

    Article  Google Scholar 

  58. Hutton SB. Cognitive control of saccadic eye movements. Brain Cogn. 2008;68:327–40.

    Article  CAS  PubMed  Google Scholar 

  59. Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol. 1998;80:1911–31.

    CAS  PubMed  Google Scholar 

  60. Robinson FR. Role of the cerebellum in movement control and adaptation. Curr Opin Neurobiol. 1995;5:755–62.

    Article  CAS  PubMed  Google Scholar 

  61. Ohki M, Kitazawa H, Hiramatsu T, Kaga K, Kitamura T, Yamada J, et al. Role of primate cerebellar hemisphere in voluntary eye movement control revealed by lesion effects. J Neurophysiol. 2009;101:934–47.

    PubMed  Google Scholar 

  62. Robinson FR, Straube A, Fuchs AF. Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J Neurophysiol. 1993;70:1741–58.

    CAS  PubMed  Google Scholar 

  63. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16:645–9.

    Article  CAS  PubMed  Google Scholar 

  64. Fabbri-Destro M, Cattaneo L, Boria S, Rizzolatti G. Planning actions in autism. Exp Brain Res. 2009;192:521–5.

    Article  PubMed  Google Scholar 

  65. Takarae Y, Minshew NJ, Luna B, Sweeney JA. Atypical involvement of frontostriatal systems during sensorimotor control in autism. Psychiatry Research: Neuroimaging. 2007;156:117–27.

    Article  PubMed  Google Scholar 

  66. Allen G, Müller R-A, Courchesne E. Cerebellar function in autism: functional magnetic resonance image activation during a simple motor task. Biol Psychiatry. 2004;56:269–78.

    Article  PubMed  Google Scholar 

  67. Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ. Autism and abnormal development of brain connectivity. J Neurosci. 2004;24:9228–31.

    Article  CAS  PubMed  Google Scholar 

  68. Pierce K, Courchesne E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism.[see comment]. Biol Psychiatry. 2001;49:655–64.

    Article  CAS  PubMed  Google Scholar 

  69. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.

    PubMed  Google Scholar 

  70. Schmahmann JD, Sherman JC. Cerebellar cognitive affective syndrome. Int Rev Neurobiol. 1997;41:433–40.

    Article  CAS  PubMed  Google Scholar 

  71. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266:458–61.

    Article  CAS  PubMed  Google Scholar 

  72. Daum I, Snitz BE, Ackermann H. Neuropsychological deficits in cerebellar syndromes. Int Rev Psychiatry. 2001;13:268–75.

    Article  Google Scholar 

  73. Gordon N. The cerebellum and cognition. Eur J Paediatr Neurol. 2007;11:232–4.

    Article  PubMed  Google Scholar 

  74. Van Mier HI, Petersen SE. Role of the cerebellum in motor cognition. Ann NY Acad Sci. 2002;978:334–53.

    Article  PubMed  Google Scholar 

  75. Rapoport M, van Reekum R, Mayberg H. The role of the cerebellum in cognition and behavior: a selective review.[see comment]. J Neuropsychiatry Clin Neurosci. 2000;12:193–8.

    CAS  PubMed  Google Scholar 

  76. Happe F, Frith U. The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord. 2006;36:5–25.

    Article  PubMed  Google Scholar 

  77. Minshew NJ, Sweeney J, Luna B. Autism as a selective disorder of complex information processing and underdevelopment of neocortical systems. Mol Psychiatry. 2002;7:S14–5.

    Article  PubMed  Google Scholar 

  78. Szatmari P. The classification of autism, Asperger’s syndrome, and pervasive developmental disorder. Can Rev Psychiatry. 2000;45:731–8.

    CAS  Google Scholar 

  79. Swedo S, Cook Jr E, Happe F, Harris J, Kaufmann W, King B, et al. American Psychiatric Association DSM-5 Development. 299.80 Asperger’s Disorder. Available at: http://www.dsm5.org/ProposedRevisions/Pages/proposedrevision.aspx?rid=97. Accessed 7 August 2010

Download references

Acknowledgments

We gratefully acknowledge the time and effort of all the participants and their families involved in this study. We thank Lynette Millist for technical support. This research was supported by Monash University, an Autism Speaks Award (#CF06-0154) awarded to Dr Joanne Fielding, and two grants from the National Health and Medical Research Council Australia: Fellowship grant (#454811) awarded to Dr Joanne Fielding and Project Grant (#585801) awarded to Dr Joanne Fielding, Dr Nicole Rinehart, Prof B.Tonge and A/Prof O. White.

Conflicts of Interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chloe Stanley-Cary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanley-Cary, C., Rinehart, N., Tonge, B. et al. Greater Disruption to Control of Voluntary Saccades in Autistic Disorder than Asperger’s Disorder: Evidence for Greater Cerebellar Involvement in Autism?. Cerebellum 10, 70–80 (2011). https://doi.org/10.1007/s12311-010-0229-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0229-y

Keywords

Navigation