Skip to main content
Log in

Combined Therapy with Idebenone and Deferiprone in Patients with Friedreich’s Ataxia

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Iron chelators are a new therapeutical approach for patients with Friedreich’s ataxia, on the basis that oxidative cell damage that occurs in these patients is due to the increasing deposits of mitochondrial iron pools. The objective of the study was to evaluate the effects of the combined therapy of idebenone and low oral doses of deferiprone on the neurological signs and cardiac function parameters. This study was designed as a prospective open-label single-arm study. Twenty Friedreich’s ataxia patients were treated with idebenone (20 mg/kg/day) and deferiprone (20 mg/kg/day) for 11 months. Patients were evaluated before the start and throughout the study with the International Cooperative Ataxia Rating Scale (ICARS) scores, echocardiographic measurements and MRI (magnetic resonance imaging) techniques to asses brain iron deposits in the dentate nucleus. No significant differences were observed in total ICARS scores when comparing baseline status and the end of the study in the whole group of patients. Posture and gait scores increased significantly after 11 months of therapy (Wilcoxon’s test, p = 0.04) and kinetic function improved significantly (Wilcoxon’s test, p = 0.015). Echocardiography data showed a significant reduction of the interventricular septum thickness (Wilcoxon’s test, p = 0.04) and in the left ventricular mass index (Wilcoxon’s test, p = 0.038) after the start of the therapy. The MRI values in the dentate nucleus showed a statistically significant reduction (Wilcoxon’s test p = 0.007) between baseline conditions and after 11 months of the therapy. Combined therapy with idebenone and deferiprone in patients with FDRA indicates a stabilizing effect in neurologic dysfunctions due to an improvement in the kinetic functions, with a worsening of gait and posture scores. Heart hypertrophy parameters and iron deposits in dentate nucleus improved significantly. Combined therapy was well tolerated with mild side effects, apart from the risk of neutropenia and progressive reduction of plasma iron parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chamberlain S, Shaw J, Rowland A, Wallis J, South S, Nakamura Y, et al. Mapping of mutation causing Friedreich’s ataxia to human chromosome 9. Nature. 1988;334(6179):248–50.

    Article  CAS  PubMed  Google Scholar 

  2. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271(5254):1423–7.

    Article  CAS  PubMed  Google Scholar 

  3. Opal P, Y Zoghbi H, Cruse RP. Friedreich ataxia (monograph on the Internet). Uptodate. 2008. Available at: www.uptodate.com. Accessed 21 April 2008

  4. Pandolfo M. Friedreich ataxia. Semin Pediatr Neurol. 2003;10(3):163–72.

    Article  PubMed  Google Scholar 

  5. Dutka DP, Donnelly JE, Nihoyannopoulos P, Oakley CM, Nunez DJ. Marked variation in the cardiomyopathy associated with Friedreich’s ataxia. Heart. 1999;81(2):141–7.

    CAS  PubMed  Google Scholar 

  6. Lodi R, Hart PE, Rajagopalan B, Taylor DJ, Crilley JG, Bradley JL, et al. Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol. 2001;49(5):590–6.

    Article  CAS  PubMed  Google Scholar 

  7. Boddaert N, Le Quan Sang KH, Rotig A, Leroy-Willig A, Gallet S, Brunelle F, et al. Selective iron chelation in Friedreich ataxia Biological and clinical implications. Blood. 2007;110(1):401–8.

    Article  CAS  PubMed  Google Scholar 

  8. Hart PE, Lodi R, Rajagopalan B, Bradley JL, Crilley JG, Turner C, et al. Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch Neurol. 2005;62(4):621–6.

    Article  PubMed  Google Scholar 

  9. Rustin P, Rotig A, Munnich A, Sidi D. Heart hypertrophy and function are improved by idebenone in Friedreich’s ataxia. Free Radic Res. 2002;36(4):467–9.

    Article  CAS  PubMed  Google Scholar 

  10. Artuch R, Aracil A, Mas A, Colome C, Rissech M, Monros E, et al. Friedreich’s ataxia: idebenone treatment in early stage patients. Neuropediatrics. 2002;33(4):190–3.

    Article  CAS  PubMed  Google Scholar 

  11. Pineda M, Arpa J, Montero R, Aracil A, Domínguez F, Galván M, et al. Idebenone treatment in paediatric and adult patients with Friedreich ataxia: long-term follow-up. Eur J Paediatr Neurol. 2008;12(6):470–5.

    Article  PubMed  Google Scholar 

  12. Ribaï P, Pousset F, Tanguy ML, Rivaud-Pechoux S, Le Ber I, et al. Neurological, cardiological and oculomotor progression in 104 patients with Friedreich ataxia during long-term follow up. Arch Neurol. 2007;64(4):558–64.

    Article  PubMed  Google Scholar 

  13. Hausse AO, Aggoun Y, Bonnet D, Sidi D, Munnich A, Rötig A, et al. Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart. 2002;87(4):346–9.

    Article  CAS  PubMed  Google Scholar 

  14. Mariotti C, Solari A, Torta D, Marano L, Fiorentini C, Di Donato S. Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology. 2003;60(10):1676–9.

    CAS  PubMed  Google Scholar 

  15. Rustin P, Bonnet D, Rötig A, Munnich A, Sidi D. Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology. 2004;62(3):524–5.

    PubMed  Google Scholar 

  16. Di Prospero NA, Baker A, Jeffries N, Fischbeck KH. Neurological effects of high-dose idebenone in patients with Friedreich ataxia: a randomized, placebo-controlled trial. Lancet Neurol. 2007;6(10):878–86.

    Article  PubMed  Google Scholar 

  17. Wong A, Yang J, Cavadini P, Gellera C, Lonnerdal B, Taroni F, et al. The Friedreich’s ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum Mol Genet. 1999;8(3):425–30.

    Article  CAS  PubMed  Google Scholar 

  18. Richardson DR, Mouralian C, Ponka P, Becker E. Development of potential iron chelators for the treatment of Friedreich’s ataxia: ligands that mobilize mitochondrial iron. Biochim Biophys Acta. 2001;1536(2–3):133–40.

    CAS  PubMed  Google Scholar 

  19. Richardson DR. Friedreich’s ataxia: iron chelators that target the mitochondrion as a therapeutic strategy? Expert Opin Investig Drugs. 2003;12(2):235–45.

    Article  CAS  PubMed  Google Scholar 

  20. Breuer W, Ermers MJ, Pootrakul P, Abramov A, Hershko C, Cabantchik ZI. Desferrioxamine-chelatable iron, a component of serum non-transferrin-bound iron, used for assessing chelation therapy. Blood. 2001;97(3):792–8.

    Article  CAS  PubMed  Google Scholar 

  21. Waldmeier PC, Buchle AM, Steulet AF. Inhibition of catechol-O-methyltransferase (COMT) as well as tyrosine and tryptophan hydroxylase by the orally active iron chelator, 1, 2-dimethyl-3-hydroxypyridin-4-one (L1, CP20), in rat brain in vivo. Biochem Pharmacol. 1993;45(12):2417–24.

    Article  CAS  PubMed  Google Scholar 

  22. Glickstein H, El RB, Link G, Breuer W, Konijn AM, Hershko C, et al. Action of chelators in iron-loaded cardiac cells: accessibility to intracellular labile iron and functional consequences. Blood. 2006;108(9):3195–203.

    Article  CAS  PubMed  Google Scholar 

  23. Glickstein H, El RB, Shvartsman M, Cabantchik ZI. Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood. 2005;106(9):3242–50.

    Article  CAS  PubMed  Google Scholar 

  24. Sohn YS, Breuer W, Munnich A, Cabantchik ZI. Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood. 2008;111(3):1690–9.

    Article  CAS  PubMed  Google Scholar 

  25. Kakhlon O, Manning H, Breuer W, Melamed-Book N, Lu C, Cortopassi G, et al. Cell functions impaired by frataxin deficiency are restored by drug-mediated iron relocation. Blood. 2008;112(13):5219–27.

    Article  CAS  PubMed  Google Scholar 

  26. Hershko CM, Link GM, Konijn AM, Cabantchik ZI. Iron chelation therapy. Curr Hematol Rep. 2005;4(2):110–6.

    CAS  PubMed  Google Scholar 

  27. Cohen AR, Galanello R, Piga A, Dipalma A, Vullo C, Tricta F. Safety profile of the oral iron chelator deferiprone: a multicentre study. Br J Haematol. 2000;108(2):305–12.

    Article  CAS  PubMed  Google Scholar 

  28. Ceci A, Baiardi P, Felisi M, Cappellini MD, Carnelli V, De Sanctis V, et al. The 29 safety and effectiveness of deferiprone in a large-scale, 3-year study in Italian patients. Br J Haematol. 2002;118(1):330–6.

    Article  CAS  PubMed  Google Scholar 

  29. Al-Refaie FN, Hershko C, Hoffbrand AV, Kosaryan M, Olivieri NF, Tondury P, et al. Results of long-term deferiprone (L1) therapy: a report by the international study group on oral iron chelators. Br J Haematol. 1995;91(1):224–9.

    Article  CAS  PubMed  Google Scholar 

  30. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci. 1997;145(2):205–11.

    Article  Google Scholar 

  31. Waldvogel D, van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Friedreich’s ataxia. Ann Neurol. 1999;46(1):123–5.

    Article  CAS  PubMed  Google Scholar 

  32. Haacke EM, Cheng NY, House MJ, Liu Q, Neelavalli J, Ogg Rj, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging. 2005;23(1):1–25.

    Article  CAS  PubMed  Google Scholar 

  33. Schenck JF, Zimmerman EA. High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR Biomed. 2004;17(7):433–45.

    Article  CAS  PubMed  Google Scholar 

  34. Artuch R, Colomé C, Vilaseca MA, Aracil A, Pineda M. Monitoring of idebenone treatment in patients with Friedreich’s ataxia by high-pressure liquid chromatography with electrochemical detection. J Neurosci Methods. 2002;115(1):63–6.

    Article  CAS  PubMed  Google Scholar 

  35. Schulz JB, Di Prospero NA, Fischbeck K. Clinical experience with high-dose idebenone in Friedreich ataxia. J Neurol. 2009;256 Suppl 1:42–5.

    Article  CAS  PubMed  Google Scholar 

  36. Boesch S, Sturm B, Hering S, Goldenberg H, Poewe W, Scheiber-Mojdehkar B. Friedreich’s ataxia: clinical pilot trial with recombinant human erythropoietin. Ann Neurol. 2007;62(5):521–4.

    Article  CAS  PubMed  Google Scholar 

  37. Boesch S, Sturm B, Hering S, Scheiber-Mojdehkar B, Steinkellner H, Goldenberg H, et al. Neurological effects of recombinant human erythropoietin in Friedreich’s ataxia: a clinical pilot trial. Mov Disord. 2008;23(13):1940–4.

    Article  PubMed  Google Scholar 

  38. Marmolino D, Manto M, Acquaviva F, Vergara P, Ravella A, Monticelli A, et al. PGC-1alpha down-regulation affects the antioxidant response in Friedreich’s ataxia. PLoS One. 2010;5(4):e10025.

    Article  PubMed  Google Scholar 

  39. Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol. 2006;2(10):551–8.

    Article  CAS  PubMed  Google Scholar 

  40. Xu C, Soragni E, Chou CJ, Herman D, Plasterer HL, Rusche JR, et al. Chemical probes identify a role for histone deacetylase three in Friedreich’s ataxia gene silencing. Chem Biol. 2009;16(9):980–9.

    Article  CAS  PubMed  Google Scholar 

  41. Fahey MC, Corben L, Collins V, Churchyard AJ, Delatycki MB. How is disease progress in Friedreich’s ataxia best measured? A study of four rating scales. J Neurol Neurosurg Psychiatry. 2007;78(4):411–3.

    Article  CAS  PubMed  Google Scholar 

  42. Meyer C, Schmid G, Görlitz S, Ernst M, Wilkens C, Wilhelms I, et al. Cardiomyopathy in Friedreich’s ataxia—assessment by cardiac MRI. Mov Disord. 2007;22(11):1615–22.

    Article  PubMed  Google Scholar 

  43. Goncalves S, Paupe V, Dassa EP, Rustin P. Deferiprone targets aconitase: implication for Friedreich’s ataxia treatment. BMC Neurol. 2008;8:20.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Sant Joan de Déu Fundation, Hospital Sant Joan de Déu-University of Barcelona. Spain. We are indebted to the parents and patients that collaborated in this study and their general paediatricians. The CIBERER is an initiative of the ISCIII, MCIN, Spain.

Financial Disclosure

Dr. Artuch and Dr. Pineda received in 2009, from Santhera Pharmaceuticals Ltd., a grant for their studies with idebenone in patients with Friedreich’s ataxia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Velasco-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasco-Sánchez, D., Aracil, A., Montero, R. et al. Combined Therapy with Idebenone and Deferiprone in Patients with Friedreich’s Ataxia. Cerebellum 10, 1–8 (2011). https://doi.org/10.1007/s12311-010-0212-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0212-7

Keywords

Navigation