Skip to main content

Advertisement

Log in

Biosemiosis and the Cellular Basis of Mind

How the Oxidation of Glucose by Individual Neurons in Brain Results in Meaningful Communications and in the Emergence of “Mind”

  • Original Paper
  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in elicitation of behaviors. To accomplish this, the brain requires large amounts of energy, and this energy is obtained by the oxidation of glucose (Glc). However, the question of how the oxidation of Glc by individual neurons in brain results in their collective ability to rapidly generate feats of cognition that allow them to recognize the nature of the universe in which they live and to communicate this information remains unclear. In this article, insights into this process are provided by first considering the brain’ s homeostatic “operating system” for supply of energy to stimulated neurons, and how this system defines the basic unit of brain “structure”. This is followed by consideration of the brain’s “two-cell” neuronal communication mechanism which defines the basic unit of brain “function”. Finally, an analysis of the nature of frequency-encoded “neuronal languages” that enable ensembles of neurons to translate energy derived from the oxidation of Glc into a collective “mind”, the aggregate of all brain processes including those involving perception, thought, insight, foresight, imagination and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Ac:

acetate

AcCoA:

acetyl coenzyme A

ADP:

adenosine di-phosphate

Asp:

aspartate

ATP:

adenosine tri-phosphate

AQP4:

aquaporin 4

ASPA:

aspartoacylase

BBB:

blood brain barrier

DSD:

dendritic-synaptic-dendritic

ECF:

extracellular fluid

EMS:

electromagnetic spectrum

Gj :

gap junction

Glc:

glucose

Glu:

glutamate

GRM3:

metabotropic Glu receptor 3

Hz:

Hertz

NAA:

N-acetylaspartate

NAAG:

N-acetylaspartylglutamate

P:

pause

Phos:

phosphate

S:

spike

Syn :

synapse

Tj :

tight junction

References

  • Agre, P., King, L. S., Yasui, M., Guggino, W. B., Ottersen, O. P., Fujiyoshi, Y., et al. (2002). Aquaporin water channels-from atomic structure to clinical medicine. Journal de Physiologie, 542, 3–16.

    Article  CAS  Google Scholar 

  • Ai, H., Rybak, J., Menzel, R., & Itoh, T. (2009). Response characteristics of vibration-sensitive interneurons related to Johnston’s organ in the honeybee, Apis mellifera. journal of Comparative Neurology, 515, 145–160.

    Article  PubMed  Google Scholar 

  • Anand, B. K., Chhina, G. S., Sharma, K. N., Dua, S., & Singh, B. (1964). Activity of single neurons in the hypothamic feeding centers: effect of glucose. The American Journal of Physiology, 207, 1146–1154.

    PubMed  CAS  Google Scholar 

  • Andrew, R. D., Labron, M. W., Boehnke, S. E., Carnduff, L., & Kirov, S. A. (2007). Physiological evidence that pyramidal neurons lack functional water channels. Cerebral Cortex, 17, 787–802.

    Article  PubMed  Google Scholar 

  • Barbieri, M. (2008). The code model of semiosis: the first steps toward a scientific biosemiotics. American Journal of Semiotics, 24(1–3), 23–37.

    Google Scholar 

  • Barbieri, M. (2009a). A short history of biosemiotics. Biosemiotics, 2, 221–245.

    Article  Google Scholar 

  • Barbieri, M. (2009b). Three types of semiosis. Biosemiotics, 2, 19–30.

    Article  Google Scholar 

  • Baslow, M. H. (1963). Memory and enzyme induction. Science, 139, 1091–1095.

    Article  PubMed  CAS  Google Scholar 

  • Baslow, M. H. (1969). Marine pharmacology. A study of toxins and other biologically active substances of marine origin (p. 286). Baltimore: Williams and Wilkins.

    Google Scholar 

  • Baslow, M. H. (2009). The languages of neurons; an analysis of coding mechanisms by which neurons communicate, learn and store information. Entropy, 11(4), 782–797.

    Article  Google Scholar 

  • Baslow, M. H. (2010a). The nature of neuronal words and language. Natural Science, 2(3), 205–211. doi:10.4236/ns.2010.12011.

    Article  Google Scholar 

  • Baslow, M. H. (2010b). Evidence that the tri-cellular metabolism of N-acetylaspartate functions as the brain’s “operating system”: how NAA metabolism supports meaningful intercellular frequency-encoded communications. Amino Acids. doi:10.1007/s00726-010-0656-6.

    Google Scholar 

  • Baslow, M. H., & Guilfoyle, D. N. (2007). Using proton magnetic resonance imaging and spectroscopy to understand brain “activation”. Brain and Language, 102(2), 153–164.

    Article  PubMed  Google Scholar 

  • Brink, E. E., & Mackel, R. G. (1993). Time course of action potentials recorded from single human afferents. Brain, 116, 415–432.

    Article  PubMed  Google Scholar 

  • Buffoli, B. (2010). Aquaporin biology and nervous system. Current Neuropharmacology, 8, 97–104.

    Article  Google Scholar 

  • Coyle, J. T., & Schwarcz, R. (2000). Mind glue. Implications of glial cell biology for psychiatry. Archives of General Psychiatry, 57, 90–93.

    Article  PubMed  CAS  Google Scholar 

  • Di Lorenzo, P. M., Leshchinskiy, S., Moroney, D. N., & Ozdoba, J. M. (2009). Making time count: functional evidence for temporal coding of taste sensation. Behavioral Neuroscience, 123, 14–25.

    Article  PubMed  Google Scholar 

  • Djurfeldt, M., Ekeberg, O., & Lansner, A. (2008). Large-scale modeling—a tool for conquering the complexity of the brain. Frontiers in Neuroinformatics, 2, 1. doi:10.3389/neuro.11.001.2008.

    Article  PubMed  Google Scholar 

  • Eyherabide, H. G., Rokem, A., Herz, A. V. M., & Samengo, I. (2009). Bursts generate a non-reducible spike-pattern code. Frontiers of Neuroscience, 3, 1. doi:10.3389/neuro.01002.2009.

    Google Scholar 

  • Froemke, R. C., Debanne, D., & Guo-Qiang, B. (2010). Temporal modulation of spike-timing-dependent plasticity. Frontiers in Synaptic Neuroscience, 2, 19. doi:10.3389/fnsyn.2010.00019.

    Google Scholar 

  • Gilbertson, T. A., Avenet, P., Kinnamon, S. C., & Roper, S. D. (1992). Proton currents through amiloride-sensitive Na channels in hamster taste cells. The Journal of General Physiology, 100, 803–824.

    Article  PubMed  CAS  Google Scholar 

  • Gillary, H. L. (1966). Stimulation of the salt receptor of the blowfly. II. Temperature. The Journal of General Physiology, 50, 351–357.

    Article  PubMed  CAS  Google Scholar 

  • Kalisman, N., Silverberg, G., & Markram, H. (2003). Deriving physical connectivity from neuronal morphology. Biological Cybernetics, 88, 210–218.

    Article  PubMed  Google Scholar 

  • Katz, Y., Menon, V., Nicholson, D. A., Geinismann, Y., Kath, W. L., & Spruston, N. (2009). Synapse distribution suggests a two-stage model of dendritic integration in CA1 pyramidal neurons. Neuron, 63, 171–177.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. R., & Rice, M. E. (2008). Hydrogen peroxide increases the excitability of substantia nigra pars reticulata GABAergic neurons. Soc. for Neurosci. Meeting, Nov. 16, 2008 Program 179.2, Poster # QQ37

  • Lennie, P. (2003). The cost of cortical computation. Current Biology, 13, 493–497.

    Article  PubMed  CAS  Google Scholar 

  • Merivee, E., Renou, M., Mand, M., Luik, A., Heidemaa, M., & Ploomi, A. (2004). Electrophysiological responses to salts from antennal chaetoid taste sensilla of the ground beetle Pterostichus aethiops. Journal of Insect Physiology, 50, 1001–1013.

    Article  PubMed  CAS  Google Scholar 

  • Meunier, D., Lambiotte, R., Fornito, A., Ersche, K. D., & Bullmore, E. T. (2009). Hierarchical modularity in human brain functional networks. Frontiers in Neuroinformatics, 3, 37. doi:10.3389/neuro.11.037.2009.

    Article  PubMed  Google Scholar 

  • Nicholson, C., & Sykova, E. (1998). Extracellular space structure revealed by diffusion analysis. Trends in Neurosciences, 21(5), 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Sepanyants, A., Hirsch, J. A., Martinez, L. M., Kisvarday, Z. F., Ferecsko, A. S., & Chklovskii, D. B. (2008). Local potential connectivity in cat primary visual cortex. Cerebral Cortex, 18, 13–28.

    Article  Google Scholar 

  • Sykova, E. (1997). The extracellular space in the CNS: its regulation, volume and geometry in normal and pathological neuronal function. The Neuroscientist, 3(1), 28–41.

    Google Scholar 

  • Sykova, E. (2004). Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience, 129, 861–876.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, S., & Sakurai, Y. (2009). Sub-millisecond firing synchrony of closely neighboring pyramidal neurons in hippocampal CA1 of rats during delayed non-matching to sample task. Frontiers in Neural Circuits, 3, 9. doi:10.3389/neuro.04.009.2009.

    Article  PubMed  Google Scholar 

  • Wheatley, D. N. (1998). Diffusion theory, the cell and the synapse. BioSystems, 45, 151–163.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris H. Baslow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baslow, M.H. Biosemiosis and the Cellular Basis of Mind. Biosemiotics 4, 39–53 (2011). https://doi.org/10.1007/s12304-010-9106-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-010-9106-9

Keywords

Navigation