Skip to main content
Log in

Genome-wide identification and expression analysis of the bHLH gene family in cauliflower (Brassica oleracea L.)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Basic helix-loop-helix (bHLH) transcription factors (TFs) are one of the largest TF families in plant species, and they play important roles in plant growth, development and stress responses. The present study systematically identified members of the cauliflower (Brassica oleracea L.) bHLH gene family based on genomic data. Analysis of bHLH family gene numbers, evolution, collinearity, gene structures and motifs indicated that cauliflower contained 256 bHLH family genes distributed on 10 chromosomes. Most of these genes have been localized in the nucleus, and they were divided into 18 subgroups which have been relatively conserved during evolution. Promoter analysis showed that most cis-acting elements were related to MeJA and ABA. Expression analysis suggested that 14 bHLH genes may be involved in the transformation of cauliflower curd from white to purple. An expression analysis of these 14 genes in FQ136 material was performed using qRT–PCR, and 9 bHLH genes (BobHLH1, 14, 58, 61, 63, 84, 231, 239 and 243) showed significantly increased or decreased expression in cauliflower from white to purple, which suggests that these 9 genes play important roles in the accumulation of anthocyanins in cauliflower. The coexpression network of these 9 genes and anthocyanin synthesis-related key genes was analyzed using weighted gene coexpression network analysis (WGCNA). In conclusion, our observations suggested that the bHLH gene family plays an important role in the accumulation of anthocyanins in cauliflower and provide an important theoretical basis for further research on the functions of the bHLH gene family and the molecular mechanism of cauliflower coloration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aslam M, Jakada BH, Fakher B, Greaves JG, Niu X, Zhenxia S, Cheng Y, Cao S, Wang X, Qin Y (2020) Genome-wide study of pineapple (Ananas comosus L.) bHLH transcription factors indicates that cryptochrome-interacting bHLH2 (AcCIB2) participates in flowering time regulation and abiotic stress response. BMC Genom. https://doi.org/10.1186/s12864-020-07152-2

    Article  Google Scholar 

  • Bailey Timothy L, Mikael B, Buske Fabian A, Martin F, Grant Charles E, Luca C, Jingyuan R, Li Wilfred W, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucl Acids Res 37:W202-w208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García JF, Bilbao-Castro JR, Robertson DL (2010) Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol 153(3):1398–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chen H, Zhang Yi, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202. https://doi.org/10.1016/j.molp.2020.06.009

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Li J, Su M, Lin Z, Chen L, Yang P (2021) A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis. Plant Physiol Biochem 158:518–523

    Article  CAS  PubMed  Google Scholar 

  • Dennis DJ, Han S, Schuurmans C (2019) bHLH transcription factors in neural development, disease, and reprogramming. Brain Res 15(1705):48–65

    Article  Google Scholar 

  • Duan Z, Tian S, Yang G, Wei M, Li J, Yang F (2021) The basic helix-loop-helix transcription factor SmbHLH1 represses anthocyanin biosynthesis in eggplant. Front Plant Sci 12(12):757936

    Article  PubMed  PubMed Central  Google Scholar 

  • Goossens J, Mertens J, Goossens A (2017) Role and functioning of bHLH transcription factors in jasmonate signalling. J Exp Bot 68(6):1333–1347

    CAS  PubMed  Google Scholar 

  • Hao Y, Zong X, Ren P, Qian Y, Fu A (2021) Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in arabidopsis. Int J Mol Sci 22(13):7152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke Q, Tao W, Li T, Pan W, Chen X, Wu X, Nie X, Cui L (2020) Genome-wide identification, evolution and expression analysis of basic helix-loop-helix (bHLH) gene family in barley (Hordeum vulgare L.). Curr Genomics 21(8):621–644

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evolut 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  • La Fountain AM, Yuan Y-W (2021) Repressors of anthocyanin biosynthesis. New Phytol 231(3):933–949

    Article  Google Scholar 

  • Lescot M (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30(1):325–327. https://doi.org/10.1093/nar/30.1.325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Shan X, Gao R, Yang S, Wang S, Gao X, Wang L (2016) Two IIIf clade-bHLHs from Freesia hybrida play divergent roles in flavonoid biosynthesis and trichome formation when ectopically expressed in Arabidopsis. Sci Rep 6(1):1–13

    Google Scholar 

  • Li C, Qiu J, Ding L, Huang M, Huang S, Yang G, Yin J (2017) Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals. Plant Physiol Biochem 112:335–345

    Article  CAS  PubMed  Google Scholar 

  • Li YY, Sui XY, Yang JS, Xiang XH, Li ZQ, Wang YY, Zhou ZC, Hu RS, Liu D (2020) A novel bHLH transcription factor, NtbHLH1, modulates iron homeostasis in tobacco (Nicotiana tabacum L.). Biochem Biophys Res Commun 522(1):233–239

    Article  CAS  PubMed  Google Scholar 

  • Li C, Yan C, Sun Q, Wang J, Yuan C, Mou Y, Shan S, Zhao X (2021) The bHLH transcription factor AhbHLH112 improves the drought tolerance of peanut. BMC Plant Biol 21(1):540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Cantore P, Iacobellis NS (2007) First Report of Head Rot of Brassica oleracea convar. botrytis var. italica Caused by Pseudomonas fluorescens in Southern Italy. Plant Disease 91(5):638–638. https://doi.org/10.1094/PDIS-91-5-0638A

    Article  PubMed  Google Scholar 

  • Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Marc G, Hurwitz David I, Marchler Gabriele H, Song James S, Narmada T, Yamashita Roxanne A, Yang M, Zhang D, Zheng C, Lanczycki Christopher J, Marchler-Bauer A (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucl Acids Res 48(D1):D265–D268

    Article  CAS  PubMed  Google Scholar 

  • Ludwig SR, Habera LF, Dellaporta SL, Lc WSR (1989) a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci U S A 86(18):7092–7096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao TY, Liu YY, Zhu HH, Zhang J, Yang JX, Fu Q, Wang N, Wang Z (2019) Genome-wide analyses of the bHLH gene family reveals structural and functional characteristics in the aquatic plant Nelumbo nucifera. PeerJ 14(7):e7153

    Article  Google Scholar 

  • Mao Z, Jiang H, Wang S, Wang Y, Yu L, Zou Q, Liu W, Jiang S, Wang N, Zhang Z, Chen X (2021) The MdHY5-MdWRKY41-MdMYB transcription factor cascade regulates the anthocyanin and proanthocyanidin biosynthesis in red-fleshed apple. Plant Sci 306:110848

    Article  CAS  PubMed  Google Scholar 

  • Nartea A, Fanesi B, Falcone PM, Pacetti D, Frega NG, Lucci P (2021) Impact of mild oven cooking treatments on carotenoids and tocopherols of cheddar and Depurple cauliflower (Brassica oleracea L. var. botrytis). Antioxidants (Basel) 10(2):196

    Article  CAS  Google Scholar 

  • Natalini A, Acciarri N, Cardi T (2021) Breeding for nutritional and organoleptic quality in vegetable crops: the case of tomato and cauliflower. Agriculture 11(7):606

    Article  CAS  Google Scholar 

  • Ning Z, Hu K, Zhou Z, Zhao D, Tang J, Wang H, Zhang H (2021) IbERF71, with IbMYB340 and IbbHLH2, coregulates anthocyanin accumulation by binding to the IbANS1 promoter in purple-fleshed sweet potato (Ipomoea batatas L.). Plant Cell Rep 40(1):157–169

    Article  CAS  PubMed  Google Scholar 

  • Otasek D, Morris JH, Bouças J, Pico AR, Demchak B (2019) Cytoscape Automation: empowering workflow-based network analysis. Genome Biol 20(1):185

    Article  PubMed  PubMed Central  Google Scholar 

  • Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD (2018) HMMER web server: 2018 update. Nucl Acids Res 46(W1):W200–W204. https://doi.org/10.1093/nar/gky448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahim MA, Afrin KS, Jung H-J, Kim H-T, Park J-I, Hur Y, Nou Ill-S (2019) Molecular analysis of anthocyanin biosynthesis-related genes reveal BoTT8 associated with purple hypocotyl of broccoli (Brassica oleracea var. italica L.). Genome 62(4):253–266. https://doi.org/10.1139/gen-2018-0173

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Holme IB, Dionisio G, Kodama M, Dzhanfezova T, Joernsgaard B, Brinch-Pedersen H (2020) Cyanidin based anthocyanin biosynthesis in orange carrot is restored by expression of AmRosea1 and AmDelila, MYB and bHLH transcription factors. Plant Mol Biol 103(4–5):443–456. https://doi.org/10.1007/s11103-020-01002-1

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Fan HJ, Ling HQ (2015) Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genom 16(1):9

    Article  CAS  Google Scholar 

  • Sun X, Wang Y, Sui N (2018) Transcriptional regulation of bHLH during plant response to stress. Biochem Biophys Res Commun 503(2):397–401

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Wang C, Zhang X, Zhang W, Jiang H, Yao X, Liu L, Wen Z, Niu G, Shan X (2019) Draft genome sequence of cauliflower (Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species. Horticult Res. https://doi.org/10.1038/s41438-019-0164-0

    Article  Google Scholar 

  • Swanson HI, Bradfield CA (1993) The AH-receptor: genetics, structure and function. Pharmacogenetics 3(5):213–230

    Article  CAS  PubMed  Google Scholar 

  • Tominaga-Wada R, Masakane A, Wada T (2018) Effect of phosphate deficiency-induced anthocyanin accumulation on the expression of Solanum lycopersicum GLABRA3 (SlGL3) in tomato. Plant Signal Behav 13(6):e1477907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Hu Z, Zhao T, Yang Y, Chen T, Yang M (2015) Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum). BMC Genom 16(1):39

    Article  Google Scholar 

  • Wang R, Zhao P, Kong N, Lu R, Pei Y, Huang C (2018) Genome-wide identification and characterization of the potato bHLH transcription factor family. Genes 9:54

    Article  PubMed Central  Google Scholar 

  • Wang L, Tang W, Hu Y, Zhang Y, Sun J, Guo X, Lu H, Yang Y, Fang C, Niu X, Yue J, Fei Z, Liu Y (2019) A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang. Plant J 99(2):359–378

    Article  CAS  PubMed  Google Scholar 

  • William R, Atchley WT, Dress A (1999) Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J Mol Evol 48:501–516

    Article  Google Scholar 

  • Yu H, Wang J, Sheng X, Zhao Z, Shen Y, Branca F, Gu H (2019) Construction of a high-density genetic map and identification of loci controlling purple sepal trait of flower head in Brassica oleracea L. italica. BMC Plant Biol. https://doi.org/10.1186/s12870-019-1831-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Feng R, Ma R, Shen Z, Cai Z, Song Z et al (2018) Genome-wide analysis of basic helix-loop-helix superfamily members in peach. PLoS One 13(4):e0195974

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Wang P, Gao W, Long Y, Wang Y, Geng S, Su X, Jiao Y, Chen Q, Qu Y (2021) Genome-wide identification of the DUF668 gene family in cotton and expression profiling analysis of GhDUF668 in Gossypium hirsutum under adverse stress. BMC Genom. https://doi.org/10.1186/s12864-021-07716-w

    Article  Google Scholar 

  • Zhou X, Fei Z, Thannhauser TW, Li L (2011) Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis). BMC Plant Biol 23(11):169

    Article  Google Scholar 

  • Zhu L, Zhao M, Chen M, Li L, Jiang Y, Liu S, Jiang Y, Wang K, Wang Y, Sun C, Chen J, Chen P, Lei J, Su Y, Wang Y, Zhang M (2020) The bHLH gene family and its response to saline stress in Jilin ginseng, Panax ginseng C.A. Meyer. Mol Genet Genom 295(4):877–890

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was mainly supported by grants from China Agriculture Research System of MOF and MARA: the Modern Agro-Industry Technology Research System, China (CARS-23-A-07), Innovative Research and Experimental Projects for Young Researchers of Tianjin Academy of Agricultural Science (2021012) and The 131 innovative team construction project of Tianjin (201923).

Author information

Authors and Affiliations

Authors

Contributions

HJ, LL, XS, ZW, CS and DS carried out the bioinformatics analysis,design, and drafted the manuscript. HJ, XZ, XY and GN performed quantitative expression analysis. CS and DS participated in supervision of the study. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Changliang Shan or Deling Sun.

Ethics declarations

Conflict of interest

The authors declare there are no competing interests.

Ethical approval and consent to participate

The cultivar FQ136 was collected from Tianjin Province in China by Tianjin Academy of Agricultural Sciences. Collection and research of this cultivar have complied with the Convention on the institutional, national, international guidelines and Trade in Endangered Species of Wild Fauna and Flora.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Liu, L., Shan, X. et al. Genome-wide identification and expression analysis of the bHLH gene family in cauliflower (Brassica oleracea L.). Physiol Mol Biol Plants 28, 1737–1751 (2022). https://doi.org/10.1007/s12298-022-01238-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-022-01238-9

Keywords

Navigation