Skip to main content
Log in

The protective effects of polyamines on salinity stress tolerance in foxtail millet (Setaria italica L.), an important C4 model crop

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Soil salinity is a major abiotic stress that adversely affects crop growth, development and productivity worldwide. In this study, the individual and synergistic roles of putrescine (Put) and spermidine (Spd) in salinity stress tolerance of foxtail millet (Setaria italica L.) was assessed. In the present study, plants treated with combined biogenic amines Put + Spd possess very efficient antioxidant enzyme systems which help to control the uninhibited oxidation and protect the plants from oxidative damage by ROS scavenging. Additionally, lower concentration of Put + Spd under NaCl stress showed reduced hydrogen peroxide, electrolyte leakage and caspase-like activity than control. FTIR analysis underlying the ability of PAs induced tolerance and the chemical bonds of Put + Spd treated plants were reminiscent of control plants. Moreover, histochemical analysis with 2′,7′–dichlorofluorescein diacetate (DCF-DA), 3,3′–Diaminobenzidine (DAB) and nitrotetrazolium blue chloride (NBT) revealed that ROS accumulation was inhibited by combined PAs under salt stress condition. These results showed that Put + Spd significantly improve the endogenous PAs, which enhance high-salinity stress tolerance by detoxifying ROS. For the first time, the synergistic ROS scavenging ability of Put along with Spd was investigated upon salinity tolerance in C4 model foxtail millet crop. Overall, our findings illustrated the implication for improving salinity tolerance of agronomically important crop species.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidae

CAT:

Catalase

CLSM:

Confocal laser scanning microscope

DAB:

3,3-diaminobenzidine

DAO:

Diamine oxidase

EL:

Electrolyte leakage

FTIR:

Fourier transform-infrared spectroscopy

GPX:

Guaiacol peroxidise

GR:

Glutathione reductase

GSH:

Glutathione

GSSG:

Glutathione disulfide

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

NaCl:

Sodium chloride

NADH+ :

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

NBT:

Nitrotetrazolium blue chloride

PAO:

Polyamine oxidase

PAs:

Polyamines

POD:

Peroxidase

Put:

Putrescine

ROS:

Reactive oxygen species

RWC:

Relative water content

SOD:

Superoxide dismutase

Spd:

Spermidine

References

  • Abdel-Latef AA (2005) Salt tolerance of some wheat cultivars. Ph.D. Thesis. South Valley Univ in Qena, Egypt, pp 1–159

  • Aebi H (1984) Catalase in vitro. Oxy Radic Biologic Sys 10:121–126

    Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barth A (2000) The infrared absorption of amino acid side chains. Progress Biophys Mol Boil 74:141–173

    CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Carlberg I, Mannervik EB (1975) Glutathione level in rat brain. J Biol Chem 250:5475–5480

    CAS  PubMed  Google Scholar 

  • Chawla S, Jain S, Jain V (2013) Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J Plant Biochem Biotechnol 22:27–34

    CAS  Google Scholar 

  • Chen J, Fang J, Guo Z, Lu S (2018) Polyamines and antioxidant defense system are associated with cold tolerance in centipede grass. Front Agr Sci Eng 5:129–138

    CAS  Google Scholar 

  • Dąbrowski P, Kalaji MH, Baczewska AH, Pawluśkiewicz B, Mastalerczuk G, Borawska-Jarmułowicz B, Paunov M, Goltsev V (2017) Delayed chlorophyll a fluorescence, MR 820: and gas exchange changes in perennial ryegrass under salt stress. J Luminescence 183:322–333

    Google Scholar 

  • Del Pozo O, Lam E (1998) Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr Biol 8:1129–1132

    PubMed  Google Scholar 

  • Duan J, Li J, Guo S, Kang Y (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J Plant Physiol 165:1620–1635

    CAS  PubMed  Google Scholar 

  • Fariduddin Q, Khan TA, Yusuf M, Aafaqee ST, Khalil RR (2018) Ameliorative role of salicylic acid and spermidine in the presence of excess salt in Lycopersicon esculentum. Photosynthetica 56:750–762

    CAS  Google Scholar 

  • Fu Y, Zhang Z, Liu J, Chen M, Pan R, Hu W, Guan Y, Hu J (2019) Seed priming with spermidine and trehalose enhances chilling tolerance of rice via different mechanisms. J Plant Growth Regul 10:1–11

    Google Scholar 

  • Gong X, Liu Y, Huang D, Zeng G, Liu S, Tang H, Zhou L, Hu X, Zhou Y, Tan X (2016) Effects of exogenous calcium and spermidine on cadmium stress moderation and metal accumulation in Boehmeria nivea (L.) Gaudich. Environ Sci Pollut Res 23:8699–8708

    CAS  Google Scholar 

  • Griffiths PR (1978) Fourier transform infrared spectroscopy: recent developments. Appl Opt 17:1315–1317. https://doi.org/10.1364/ao.17.001315

    Article  CAS  PubMed  Google Scholar 

  • Hameed M, Ashraf M (2008) Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the salt range (Pakistan) to salinity stress. Flora 203:683–694

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stechiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  PubMed  Google Scholar 

  • Hu X, Zhang Y, Shi Y, Zhang Z, Zou Z, Zhang H, Zhao J (2012) Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity–alkalinity mixed stress. Plant Physiol Biochem 57:200–209

    CAS  PubMed  Google Scholar 

  • Huang CC, Chen KL, Cheung CH, Chang JY (2013) Autophagy induced by cathepsin S inhibition induces early ROS production, oxidative DNA damage, and cell death via xanthine oxidase. Free Radical Biol Medicine 65:1473–1486

    CAS  Google Scholar 

  • Hussain T, Koyro HW, Huchzermeyer B, Khan MA (2015) Eco-physiological adaptations of Panicum antidotale to hyperosmotic salinity: water and ion relations and anti-oxidant feedback. Flora 212:30–37

    Google Scholar 

  • Kannappan A, Sivaranjani M, Srinivasan R, Rathna J, Pandian SK, Ravi AV (2017) Inhibitory efficacy of geraniol on biofilm formation and development of adaptive resistance in Staphylococcus epidermidis RP62A. J Med Microbiol 66:1506–1515

    CAS  PubMed  Google Scholar 

  • Khan MI, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18

    CAS  PubMed  Google Scholar 

  • Kissoudis C, van de Wiel C, Visser RG, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci 5:207

    PubMed  PubMed Central  Google Scholar 

  • Kong-Ngern K, Daduang S, Wongkham C, Bunnag S, Kosittrakun M, Theerakulpisut P (2005) Protein profiles in response to salt stress in leaf sheaths of rice seedlings. Sci Asia 31:403–408

    CAS  Google Scholar 

  • Lahlali R, Jiang Y, Kumar S, Karunakaran C, Liu X, Borondics F, Hallin E, Bueckert R (2014) ATR–FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance. Front Plant Sci 5:747

    PubMed  PubMed Central  Google Scholar 

  • Li S, Jin H, Zhang Q (2016) The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in zoysia grass (Zoysia japonica Steud) subjected to short-term salinity stress. Front Plant Sci 7:1221

    PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Proto Food Anal Chem 1:3–4

    Google Scholar 

  • Lin CC, Kao CH (1999) NaCl induced changes in ionically bounds peroxidase activity in roots of rice seedlings. Plant Soil 216:147–153

    CAS  Google Scholar 

  • Liu JH, Wang W, Wu H, Gong X, Moriguchi T (2015) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:10

    CAS  Google Scholar 

  • Mandal C, Ghosh N, Maiti S, Das K, Gupta S, Dey N, Adak MK (2013) Antioxidative responses of Salvinia (Salvinia natans Linn.) to aluminium stress and it’s modulation by polyamine. Physiol Mol Biol Plants 19:91–103

    CAS  PubMed  Google Scholar 

  • Miller GA, Suzuki N, Ciftci-Yilmaz SU, Mittler RO (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Questions and future challenges. Trends Plant Sci 9:490–498

    CAS  PubMed  Google Scholar 

  • Mostofa MG, Rahman A, Ansary MM, Watanabe A, Fujita M, Tran LS (2015) Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Sci Rep 5:14078

    PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255

    CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nayyar H, Chander S (2004) Protective effects of polyamines against oxidative stress induced by water and cold stress in chick pea. J Agro Crop Sci 190:355–365

    CAS  Google Scholar 

  • Nemeth M, Janda T, Horvath E, Paldi E, Szalai G (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci 162:569–574

    CAS  Google Scholar 

  • Panuccio MR, Chaabani S, Roula R, Muscolo A (2018) Bio-priming mitigates detrimental effects of salinity on maize improving antioxidant defense and preserving photosynthetic efficiency. Plant Physiol Biochem 132:465–474

    CAS  PubMed  Google Scholar 

  • Paoletti F, Mocali A (1990) Determination of superoxide dismutase activity by purely chemical system based on NAD (P) H. Oxidation. Methods Enzymol 186:209–220

    CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants. Ecotoxicol Env Saf 60:324–349

    CAS  Google Scholar 

  • Parvin S, Lee OR, Sathiyaraj G, Khorolragchaa A, Kim YJ, Yang DC (2014) Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene 537:70–78

    CAS  PubMed  Google Scholar 

  • Paul S, Banerjee A, Roychoudhury A (2018) Role of polyamines in mediating antioxidant defense and epigenetic regulation in plants exposed to heavy metal toxicity. Plants under metal and metalloid stress: responses, tolerance and remediation. Nature 5:229–247

    Google Scholar 

  • Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1–11

    CAS  Google Scholar 

  • Rady MM, Hemida KA (2015) Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicol Env Saf 119:178–185

    CAS  Google Scholar 

  • Rasool S, Hameed A, Azooz MM, Siddiqi TO, Ahmad P (2013) Salt stress: causes, types and responses of plants. Ecophysiol Responses Plants Under Salt Stress 3:1–24

    Google Scholar 

  • Rathinapriya P, Satish L, Rameshkumar R, Pandian S, Rency AS, Ramesh M (2018) Role of activated charcoal and amino acids in developing an efficient regeneration system for Foxtail Millet (Setaria italica (L.) Beauv.) using leaf base segments. Physiol Mol Biol Plants 25:533–548

    PubMed  PubMed Central  Google Scholar 

  • Rossi FR, Krapp AR, Bisaro F, Maiale SJ, Pieckenstain FL, Carrillo N (2017) Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea. Plant J 92:761–773

    CAS  PubMed  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2011) Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J Plant Physiol 168:317–328

    CAS  PubMed  Google Scholar 

  • Sang T, Shan X, Li B, Shu S, Sun J, Guo SR (2016) Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings. Plant Cell Rep 35:1769–1782

    CAS  PubMed  Google Scholar 

  • Sapeta H, Costa JM, Lourenco T, Maroco J, Van der Linde P, Oliveira MM (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Experim Botany 85:76–84

    CAS  Google Scholar 

  • Satish L, Rathinapriya P, Rency AS, Ceasar SA, Prathibha M, Pandian S, Rameshkumar R, Ramesh M (2016) Effect of salinity stress on finger millet (Eleusine coracana (L.) Gaertn): histochemical and morphological analysis of coleoptile and coleorhizae. Flora 222:111–120

    Google Scholar 

  • Satish L, Rency AS, Ramesh M (2018) Spermidine sprays alleviate the water deficit-induced oxidative stress in finger millet (Eleusine coracana L. Gaertn.) plants. Biotech 8:63

    Google Scholar 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trend Plant Sci 21:329–340

    CAS  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    CAS  PubMed  Google Scholar 

  • Singh M, Singh VP, Prasad SM (2019) Nitrogen alleviates salinity toxicity in Solanum lycopersicum seedlings by regulating ROS homeostasis. Plant Physiol Biochem 141:466–476

    CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Ramanjulu S, Ramachandra-Kini K, Prakash HS, Shekar-Shetty H, Savithri HS, Sudhakar C (1999) Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci 141:1–9

    CAS  Google Scholar 

  • Sreenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Planta 109:435–442

    CAS  Google Scholar 

  • Su G, An Z, Zhang W, Liu Y (2005) Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls. J Plant Physiol 162:1297–1303

    CAS  PubMed  Google Scholar 

  • Sudhakar C, Veeranagamallaiah G, Nareshkumar A, Sudhakarbabu O, Sivakumar M, Pandurangaiah M, Kiranmai K, Lokesh U (2015) Polyamine metabolism influences antioxidant defense mechanism in foxtail millet (Setaria italica L.) cultivars with different salinity tolerance. Plant Cell Rep 34:141–156

    CAS  PubMed  Google Scholar 

  • Sun M, Wang T, Fan L, Wang H, Pan H, Cui X, Lou Y, Zhuge Y (2020) Foliar applications of spermidine improve foxtail millet seedling characteristics under salt stress. Biol Plantarum 64:353–362

    Google Scholar 

  • Tabot PT, Adams JB (2013) Early responses of Bassia diffusa (Thunb.) Kuntze to submergence for different salinity treatments. South Afr J Bot 84:19–29

    CAS  Google Scholar 

  • Tajti J, Janda T, Majláth I, Szalai G, Pal M (2018) Comparative study on the effects of putrescine and spermidine pre-treatment on cadmium stress in wheat. Ecotoxicol Env Saf 148:546–554

    CAS  Google Scholar 

  • Tang S, Zhang H, Li L, Liu X, Chen L, Chen W, Ding Y (2018) Exogenous spermidine enhances the photosynthetic and antioxidant capacity of rice under heat stress during early grain-filling period. Funct Plant Biol 45:911–921

    CAS  PubMed  Google Scholar 

  • Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18

    CAS  PubMed  Google Scholar 

  • Van Ha C, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Van Dong N, Yamaguchi-Shinozaki K (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci 111:851–856

    PubMed  Google Scholar 

  • Wang F, Manku S, Hall DG (2000) Solid phase syntheses of polyamine toxins ho-416b and phtx-433. Use of an efficient polyamide reduction strategy that facilitates access to branched analogues. Organic Let 2:1581–1583

    CAS  Google Scholar 

  • Wang H, Liang W, Huang J (2013) Putrescine mediates aluminum tolerance in red kidney bean by modulating aluminum-induced oxidative stress. Crop Sci 53:2120–2128

    CAS  Google Scholar 

  • Wasti S, Mimouni H, Smiti S, Zid E, Ben Ahmed H (2012) Enhanced salt tolerance of tomatoes by exogenous salicylic acid applied through rooting medium. J Integr Bio 16:200–207

    CAS  Google Scholar 

  • Wu J, Shu S, Li C, Sun J, Guo S (2018) Spermidine-mediated hydrogenperoxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots. Plant Physiol Biochem 128:152–162

    CAS  PubMed  Google Scholar 

  • Yang J, Yen HE (2002) Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier transform infrared spectroscopy study. Plant Physiol 130:1032–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon JY, Hamayun M, Lee SK, Lee IJ (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12:63–68

    Google Scholar 

  • Zhang JP, Wang MY, Bai YF, Jia JP, Wang GY (2005) Rapid evaluation on drought tolerance of foxtail millet at seedling stage. J Plant Genet Resour 6:59–62

    CAS  Google Scholar 

  • Zhang Y, Zhang L, Hu XH (2014) Exogenous spermidine-induced changes at physiological and biochemical parameters levels in tomato seedling grown in saline-alkaline condition. Bot studies 55:1–8

    Google Scholar 

  • Zhao Q, Bai J, Lu Q, Zhang G (2017) Effects of salinity on dynamics of soil carbon in degraded coastal wetlands: implications on wetland restoration. Phys Chem Earth Parts A/B/C 97:12–18

    Google Scholar 

  • Zhou L, Zhou H, Peng Y, Zhang X, Ma X, Huang L, Yan Y (2015) Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. J Plant Growth Regul 76:71–82

    Google Scholar 

Download references

Acknowledgement

The author P. Rathinapriya (UGC order no: F.25-1/2013-14 (BSR)/7-326/2011 dt 30.05.2014) thank the University Grants Commission, New Delhi, India for financial support in the form of fellowship. The authors sincerely acknowledge the computational and Bioinformatics facility provided by the Alagappa University Bioinformatics Infrastructure Facility (funded by DBT, GOI; File No. BT/BI/25/012/2012, BIF). The authors also thankfully acknowledge RUSA 2.0 [F. 24-51/2014-U, Policy (TN Multi-Gen), Dept of Edn, GOI], DST-FIST (Grant No. SR/FST/LSI-639/2015(C)), UGC-SAP (Grant No. F.5-1/2018/DRS-II (SAP-II)) and DST-PURSE (Grant No. SR/PURSE Phase 2/38 (G)) for providing instrumentation facilities.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: PR & MR. Performed the experiments: PR MB KR RA RR. Analyzed the data: PR LS SP. Contributed reagents/materials/analysis tools: MR. Wrote the paper: PR. All the authors have read the manuscript and approved for publication.

Corresponding author

Correspondence to Manikandan Ramesh.

Ethics declarations

Conflict of interest

The authors don’t have any conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2066 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathinapriya, P., Pandian, S., Rakkammal, K. et al. The protective effects of polyamines on salinity stress tolerance in foxtail millet (Setaria italica L.), an important C4 model crop. Physiol Mol Biol Plants 26, 1815–1829 (2020). https://doi.org/10.1007/s12298-020-00869-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00869-0

Keywords

Navigation