Skip to main content
Log in

Redox-regulation of germination during imbibitional oxidative and chilling stress in an indica rice cultivar (Oryza sativa L., Cultivar Ratna)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Imbibitional oxidative stress of different magnitude, imposed by treatment with different titer of H2O2 (both elevated, 20 mM and low, 500 µM) to an indica rice cultivar (Oryza sativa L., Cultivar Ratna) caused formation of differential redox cues at the metabolic interface, as evident from significant alteration of ROS/antioxidant ratio, efficacy of ascorbate–glutathione cycle, radical scavenging property, modulation of total thiol content and expression of oxidative membrane protein and lipid damages as biomarkers of oxidative stress. All the redox parameters examined, substantiate the experimental outcome that treatment with elevated concentration of H2O2 caused serious loss of redox homeostasis and germination impairment, whereas low titre H2O2 treatment not only restored redox homeostasis but also improve germination and post-germinative growth. The inductive pulse of H2O2 (500 µM) exhibited significantly better performance of ascorbate–glutathione pathway, which was otherwise down-regulated significantly in 20 mM H2O2 treatment-raised seedlings. A comparison between imbibitional chilling stress-raised experimental rice seedlings with 20 mM H2O2 treated rice seedling revealed similar kind of generation of redox cues and oxidative stress response. Further, imbibitional H2O2 treatments in rice also revealed a dose-dependent regulation of expression of genes of Halliwell-Asada pathway enzymes, which is in consonance with the redox metabolic response of germinating rice seeds. In conclusion, a dose-dependent regulation of H2O2 mediated redox cues and redox regulatory properties during germination in rice are suggested, the knowledge of which may be exploited as a promising seed priming technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anjum BA, Xie X, Wang L, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032

    Google Scholar 

  • Ara N, Nakkanong K, Wenhui LV, Yang J, Hu Z, Zhang M (2013) Antioxidant enzymatic activitie4 s and gene expression associated with heat tolerance in the stems and roots of two cucurbit species (Cucurbita maxima and Cucurbita moschata) and their inter-specific inbreed line Maxchata. Int J Mol Sci 14(12):24008–24028

    Article  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  Google Scholar 

  • Ashraf MA, Rasheed R, Hussain I, Iqbal M, Haider MZ, Parveen S et al (2014) Hydrogen peroxide modulates antioxidant system and nutrient relation in maize (Zea mays L.) under water-deficit conditions. Arch Agron Soil Sci 61:507–523

    Article  Google Scholar 

  • Awasthi R, Bhandari K, Nayyar H (2015) Temperature stress and redox homeostasis in agricultural crops. Front Environ Sci. https://doi.org/10.3389/fenvs.2015.00011

    Article  Google Scholar 

  • Barba-Espín G, Diaz-Vivancos P, Job D, Belghazi M, Job C, Hernández JA (2011) Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environ 34:1907–1919. https://doi.org/10.1111/j.1365-3040.2011.02386.x

    Article  CAS  PubMed  Google Scholar 

  • Barba-Espín G, Hernández JA, Diaz-Vivancos P (2012) Role of H2O2 in pea seed germination. Plant Signal Behav 7:193–195. https://doi.org/10.4161/psb.18881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoli CG, Simontacchi M, Tambussi E, Beltrano J, Montaldi E, Puntarulo S (1999) Drought and watering dependent oxidative stress: effect on antioxidative content in Triticum aestivum L. leaves. J Exp Bot 50(322):375–383

    Article  CAS  Google Scholar 

  • Basu A et al (2010) Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutr 140(9):1582–1587

    Article  CAS  Google Scholar 

  • Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H et al (2011) Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. Plant Cell 23:2196–2208. https://doi.org/10.1105/tpc.111.086694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benard J, Runner RTM (2007) Constituents of Gardenia volkensii: their brine shrimp lethality and DPPH radical scavenging properties. Nat Prod Res 21(2):121–125

    Article  Google Scholar 

  • Benzie IFE, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HMW, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy. Springer, New York

    Book  Google Scholar 

  • Bhattacharjee S (2008) Calcium-dependent signaling pathway in heat-induced oxidative injury in Amaranthus lividus. Biol Plant 52:1137–1140

    Article  Google Scholar 

  • Bhattacharjee S (2012) An inductive pulse of hydrogen peroxide pretreatment restores redox-homeostasis and mitigates oxidative membrane damage under extremes of temperature in two rice cultivars (Oryza sativa L., Cultivars Ratna and SR 26B). Plant Growth Regul 68:395–410

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2013) Heat and chilling induced disruption of redox homeostasis and its regulation by hydrogen peroxide in rice (Oryza sativa L., Cultivar Ratna). Physiol Mol Biol Plants 19:199–207. https://doi.org/10.1007/s12298-012-0159-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burch-Smith TM, Schiff M, Lin D-KS (2006) Efficient virus induced gene silencing in Arabidopsis. Plant Physiol 42:21–27

    Article  Google Scholar 

  • Bykova NV, Hoehn B, Rampitsch C, Banks T, Stebbing JA, Fan T et al (2011) Redox-sensitive proteome and antioxidant strategies in wheat seed dormancy control. Proteomics 11:865–882. https://doi.org/10.1002/pmic.200900810

    Article  CAS  PubMed  Google Scholar 

  • Chaitanya KSK, Naithani SC (1994) Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability of Shorea robusta Gaertn F. New Phytol 126:623–627

    Article  CAS  Google Scholar 

  • Chakraborty A, Bhattacharjee S (2015) Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars. J Plant Physiol 176:65–77

    Article  CAS  Google Scholar 

  • Chen K, Arora R (2011) Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in spinach (Spinacia oleracea). Plant Sci 180:212–220

    Article  CAS  Google Scholar 

  • Chen K, Arora R (2013) Priming memory invokes seed stress-tolerance. Environ Exp Bot 94:33–45

    Article  CAS  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  CAS  Google Scholar 

  • Dekok LJ, Kuiper PJC (1986) Effect of short term incubation with sulfate, chloride and selenate on glutathione content of spinach leaf disc. Physiol Plant 68:472–482

    Google Scholar 

  • Desikan R, Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  CAS  Google Scholar 

  • El-Araby MM, Moustafa SMA, Ismail AI, Hegazi AZA (2006) Hormone and phenol levels during germination and osmopriming of tomato seeds, and associated variations in protein patterns and anatomical seed features. Acta Agron Hung 54:441–458. https://doi.org/10.1556/AAgr.54.2006.4.7

    Article  CAS  Google Scholar 

  • El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu SM, Balzergue S et al (2015) Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell Environ 38:364–374. https://doi.org/10.1111/pce.12371

    Article  CAS  PubMed  Google Scholar 

  • Ellman G (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:72–77

    Article  Google Scholar 

  • Fick NG, Qualset CD (1975) Genetic control of plant amylase activity. Proc Natl Acad Sci USA 72:852–862

    Article  Google Scholar 

  • Foyer CH, Noctor G (2013) Redox signalling in plants. Antioxid Redox Signal 18:2081–2090

    Article  Google Scholar 

  • Foyer CH, Lopez-Delago H, Dat JF, Scott JM (1997) Hydrogen peroxide and glutathione associated mechanism of acclamatory stress tolerance and signaling. Physiol Plant 100:241–251

    Article  CAS  Google Scholar 

  • Giannopolities CN, Ries SK (1977) Superoxide dismutase: I. Occurrence in higher plants. Plant Physiol 59:309–319

    Article  Google Scholar 

  • He L, Gao Z, Li R (2009) Pretreatment of seed with H2O2 enhances drought tolerance of wheat seedlings. Afr J Biotechnol 8(22):6151–6157

    Article  CAS  Google Scholar 

  • He D, Han C, Yao J, Shen S, Yang P (2011) Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics 11:2693–2713

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photo-oxidation in isolated chloroplasts: kinetics and stoichiometry of fatty acid oxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Hodges DM, Forney CF, Wisme WV (2001) Antioxidant responses in harvested leaves of two cultivars of spinach differing in senescence rates. J Soc Hortic Sci 126:611–617

    Article  CAS  Google Scholar 

  • Hossain MA, Fujita M (2013) Hydrogen peroxide priming stimulates drought tolerance in mustard (Brassica juncea L.). Plant Gene Trait 4:109–123

    Google Scholar 

  • Hossain MA, Ismail MR, Uddin MK, Islam MZ, Ashrafuzzaman M (2013) Efficacy of ascorbate–glutathione cycle for scavenging H2O2 in two contrasting rice genotypes during salinity stress. Aust J Crop Sci 7:1801–1808

    CAS  Google Scholar 

  • Hossain MA, Bhattacharjee S, Armin SA, Qian P, Xin W, Li HU, Burritt DJ, Fujita M, Tran L-SP (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00420

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sin 46:1–10

    CAS  Google Scholar 

  • Ishibashi Y, Tawaratsumida T, Kondo K, Kasa S, Sakamoto M, Aoki N et al (2012) Reactive oxygen species are involved in gibberellins/abscisic acid signaling in barley aleurone cells. Plant Physiol 158:1705–1714. https://doi.org/10.1104/pp.111.192740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defense system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42(11):1265–1273

    Article  CAS  Google Scholar 

  • Kapoor D, Sharma R, Handa N, Kaur H, Rattan A, Yadav P et al (2015) Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Front Environ Sci 03:13–23. https://doi.org/10.3389/fenvs.2015.00013

    Article  Google Scholar 

  • Kovalchuk I (2010) Multiple roles of radicals in plants. In: Dutta Gupta S (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Boca Raton, pp 31–44

    Chapter  Google Scholar 

  • Kubala S, Garnczarska M, Wojtyla L, Clippe A, Kosmala A, Żmieńko A et al (2015) Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach. Plant Sci 231:94–113

    Article  CAS  Google Scholar 

  • Lariguet P, Ranocha P, De Meyer M, Barbier O, Penel C, Dunand C (2013) Identification of a hydrogen peroxide signalling pathway in the control of light-dependent germination in Arabidopsis. Planta 238:381–395. https://doi.org/10.1007/s00425-013-1901-5

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Tan M, Dong W, Jiang M (2009) Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. J Exp Bot 60:3221–3238

    Article  CAS  Google Scholar 

  • Liu ZJ, Guo YK, Bi JG (2010) Exogenous hydrogen peroxide change antioxidant enzyme activity and plastid ultrastructure in leaves of two cucumber ecotypes under osmotic stress. J Plant Growth Regul 29(02):171–183

    Article  Google Scholar 

  • MacNevin WM, Uron PF (1953) Spectrum of hydrogen peroxide from organic hydroperoxides. Anal Chem 25:1760–1761

    Article  CAS  Google Scholar 

  • Mensor LI, Menezes FS, Leitao GG, Reis AS, dos Santos T, Coube CS et al (2001) Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15:127–130

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K et al (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  Google Scholar 

  • Moradi F, Ismail AAM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173

    Article  CAS  Google Scholar 

  • Mytilineou C, Kramer BC, Yabut JA (2002) Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 8:385–387

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Neill S, Desikan R, Clarke A, Hancock J (1999) Hydrogen peroxide signaling in plant cells. In: Smallwood MF, Calvert CJ, Bowlas DJ (eds) Plant responses to environmental stress. BIOS Scientific Publishers, Oxford, pp 59–64

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbsate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Novarri-Izzo F, Pinzino C, Quartacci MF, Sgherri CLM (1994) Intracellular membranes : kinetics of superoxide production and changes in thylakoids of resurrection plants upon dehydration and rehydration. Proc R Soc Edinb Sect B 4(102B):187–191

    Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, Mccarthy I, Delrio LA (2002) Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide-a central hub for information flow in plant cells. AoB Plants. https://doi.org/10.1093/aobpla/pls014

    Article  PubMed  PubMed Central  Google Scholar 

  • Re R, Pellegrinni N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activities applying an improved ABTS radical cationdecolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  • Roychoudhury A, Basu S, Sarkar S, Sengupta DN (2008) Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic Indicarice cultivar. Plant Cell Reprod 27:1395–1410

    Article  CAS  Google Scholar 

  • Rubio-Casal AE, Castillo JM, Lucue C, Fig Ureo ME (2003) Influence of salinity on germination and seed viability of two primary colonizers of Mediterranean salt plants. J Arid Environ 53:145–152

    Article  Google Scholar 

  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 511:011–012

    Google Scholar 

  • Simontacchi M, Caro A, Fraga CG, Puntarulo S (1993) Oxidative stress affects α-tocopherol content in soyabean embryonic axes upon imbibitions. Plant Physiol 103:943–953

    Article  Google Scholar 

  • Singh VP (1997) Interaction of temperature and microsomal peroxidase in aflatoxin degradation by Aspergillus flavus 102566. Curr Sci 72:529–532

    Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism & functions of a multi-facetted molecule. Curr Plant Biol 3:229–235

    Article  CAS  Google Scholar 

  • Snell FD, Snell CT (1971) Colorimetric methods of analysis. Van Nostard Reinford Co, New York

    Google Scholar 

  • Soeda A, Nakashima T, Okumura A, Kuwata K, Shinoda J, Iwama T (2005) Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task. Neuroradiology 47:501–506

    Article  Google Scholar 

  • Song Y, Manson JE, Buring JE et al (2005) Association of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. J Am Coll Nutr 24:376–384

    Article  CAS  Google Scholar 

  • Sun CP, Zhang JZ, Duan SJ (1999) Free radical biology. Science and Technology University of China Press, Hefei

    Google Scholar 

  • Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inze D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821

    Article  CAS  Google Scholar 

  • Wahid A, Parveen M, Gelani S, Basra SMA (2007) Pretreatment of seeds with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283–294

    Article  CAS  Google Scholar 

  • Wang Z, Xing S, Birkenbihl RP, Zachgo S (2009) Conserved functions of Arabidopsis and rice CC-type glutaredoxins in flower development and pathogen response. Mol Plant 2:323–335

    Article  CAS  Google Scholar 

  • Wang Y, Zhang J, Li JL, Ma XR (2014) Exogenous hydrogen peroxide enhanced the thermotolerance of Festuca arundinacea and Lolium perenne by increasing the antioxidative capacity. Acta Physiol Plant 36:2915–2924

    Article  CAS  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  CAS  Google Scholar 

  • Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:66. https://doi.org/10.3389/fpls.2016.00066

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye N, Zhu G, Liu Y, Zhang A, Li Y, Liu R et al (2012) Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J Exp Bot 63:1809–1822. https://doi.org/10.1093/jxb/err336

    Article  CAS  Google Scholar 

  • Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidise isozymes in response to oxidative stresses. Plant Physiol 123:223–234

    Article  CAS  Google Scholar 

  • Yu CW, Murphy TM, Liu CH (2003) Hydrogen peroxide induced chilling tolerance in mung bean mediated through ABA-induced glutathione accumulation. Funct Plant Biol 30:958–963

    Article  Google Scholar 

  • Zhang J, Kirkham MB (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol 132:361–373

    Article  CAS  Google Scholar 

  • Zhang D, Chen L, Li D, Lv B, Chen Y, Chen J et al (2014) OsRACK1 is involved in abscisic acid- and H2O2-mediated signaling to regulate seed germination in rice (Oryza sativa, L.). PLoS ONE 9:e97120. https://doi.org/10.1371/journal.pone.0097120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work is supported by a Major Research Project grant from the University Grants Commission, New Delhi, India [F. No. 41-429/2012(SR) Dated 16.07.2012]. AC acknowledges UGC for research fellowship. Authors acknowledge UGC, New Delhi, for instrumentation facility of UGC-CAS (F.5-13/2012 (SAP II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Bhattacharjee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig.

 1. Experimental exhibiting overall processes from preparing samples under treatment to assessment of redox-parameters, efficacy of ascorbate–glutathione cycle, gene expression and oxidative damages to membrane protein and lipid of an indica rice cultivar (Oryza sativa L. cv. Ratna). Figure 2: Molecular model hypothesizing the results of biochemical assay and differential expression of genes of antioxidant enzymes associated with differential redox-regulation, efficacy of ascorbate–glutathione cycle and oxidative membrane damage of indica rice cultivar (Ratna) towards different magnitude of imbibitional oxidative stress and chilling stress. (PDF 83 kb)

Supplementary material 2 (PDF 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarty, A., Banik, N. & Bhattacharjee, S. Redox-regulation of germination during imbibitional oxidative and chilling stress in an indica rice cultivar (Oryza sativa L., Cultivar Ratna). Physiol Mol Biol Plants 25, 649–665 (2019). https://doi.org/10.1007/s12298-019-00656-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-019-00656-6

Keywords

Navigation