Skip to main content
Log in

Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The short time response to salt stress was studied in Cakile maritima. Plants were exposed to different salt concentrations (0, 100, 200 and 400 mM NaCl) and harvested after 4, 24, 72 and 168 h of treatment. Before harvesting plants, tissue hydration, osmotic potential, inorganic and organic solute contents, and ornithine-δ-aminotransferase activity were measured. Plants of C. maritima maintained turgor and tissue hydration at low osmotic potential mainly at 400 mM NaCl. The results showed that, in leaves and stems, Na+ content increased significantly after the first 4 h of treatment. However, in roots, the increase of Na+ content remained relatively unchanged with increasing salt. The K+ content decreased sharply at 200 and 400 mM NaCl with treatment duration. This decrease was more pronounced in roots. The content of proline and amino acids increased with increasing salinity and treatment duration. These results indicated that the accumulation of inorganic and organic compounds was a central adaptive mechanism by which C. maritima maintained intracellular ionic balance under saline conditions. However, their percentage contribution to total osmotic adjustment varies from organ to organ; for example, Na+ accumulation mainly contributes in osmotic adjustment of stem tissue (60%). Proline contribution to osmotic adjustment reached 36% in roots. In all organs, proline as well as δ-OAT activity increased with salt concentration and treatment duration. Under normal growth conditions, δ-OAT is mainly involved in the mobilization of nitrogen required for plant growth. However, the highly significant positive correlation between proline and δ-OAT activity under salt-stress conditions suggests that ornithine pathway contributed to proline synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • AbdElgawad H, De Vos D, Zinta G, Domagalska MA, Beemster GTS, Asard H (2015) Grassland species differentially regulate proline concentrations under future climate conditions: an integrated biochemical and modelling approach. New Phytol 208:354–369

    Article  CAS  Google Scholar 

  • Adams E, Frank L (1980) Metabolism of proline and the hydroxyprolines. Annu Rev Biochem 49:1005–1061

    Article  CAS  Google Scholar 

  • Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131

    Article  CAS  Google Scholar 

  • Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2:3–12

    Article  CAS  Google Scholar 

  • Armengaud P, Thiery L, Buhot N, Grenier-de March G, Savoure A (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant 120:442–450

    Article  CAS  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora Morphol Distrib Funct Ecol Plants 199:361–376

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110

    Article  CAS  Google Scholar 

  • Athar H-u-R, Zafar ZU, Ashraf M (2015) Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators. J Agron Crop Sci 201:428–442

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Belkheiri O, Mulas M (2013) The effects of salt stress on growth, water relations and ion accumulation in two halophyte Atriplex species. Environ Exp Bot 86:17–28

    Article  CAS  Google Scholar 

  • Bressan RA, Zhang CQ, Zhang H, Hasegawa PM, Bohnert HJ, Zhu JK (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol 127:1354–1360

    Article  CAS  Google Scholar 

  • da Rocha IM, Vitorello VA, Silva JS, Ferreira-Silva SL, Viegas RA, Silva EN, Silveira JA (2012) Exogenous ornithine is an effective precursor and the delta-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves. J Plant Physiol 169:41–49

    Article  Google Scholar 

  • Debez A, Saadaoui D, Ramani B, Ouerghi Z, Koyro H-W, Huchzermeyer B, Abdelly C (2006a) Leaf H+-ATPase activity and photosynthetic capacity of Cakile maritima under increasing salinity. Environ Exp Bot 57:285–295

    Article  CAS  Google Scholar 

  • Debez A, Taamalli W, Saadaoui D, Ouerghi Z, Zarrouk M, Huchzermeyer B, Abdelly C (2006b) Salt effect on growth, photosynthesis, seed yield and oil composition of the potential crop halophyte Cakile maritima. In: Öztürk M, Waisel Y, Khan MA, Görk G (eds) Biosaline agriculture and salinity tolerance in plants. Birkhäuser, Basel, pp 55–63

    Chapter  Google Scholar 

  • Debez A, Saadaoui D, Slama I, Huchzermeyer B, Abdelly C (2010) Responses of Batis maritima plants challenged with up to two-fold seawater NaCl salinity. J Plant Nutr Soil Sci/Zeitschrift für Pflanzenernährung und Bodenkunde 173:291

    Article  CAS  Google Scholar 

  • Delauney AJ, Hu CA, Kishor PB, Verma DP (1993) Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J Biol Chem 268:18673–18678

    CAS  PubMed  Google Scholar 

  • Demiral T, Turkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    Article  CAS  Google Scholar 

  • Funck D, Stadelhofer B, Koch W (2008) Ornithine-δ-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol 8:40

    Article  Google Scholar 

  • Gagneul D, Aïnouche A, Duhazé C, Lugan R, Larher FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic plumbaginaceae Limonium latifolium. Plant Physiol 144:1598–1611

    Article  CAS  Google Scholar 

  • Glenn E, Brown J (1998) Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil. Am J Bot 85:10

    Article  CAS  Google Scholar 

  • Harrouni MC, Daoud S, Koyro H-W (2003) Effect of seawater irrigation on biomass production and ion composition of seven halophytic species in Morocco. In: Lieth H, Mochtchenko M (eds) Cash crop halophytes: recent studies: 10 years after Al Ain Meeting. Springer, Dordrecht, pp 59–70

    Chapter  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition, 2nd edn. Commonwealth Agricultural Bureaux, Farnham Royal

    Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    Article  CAS  Google Scholar 

  • Kim HR, Rho HW, Park JW, Park BH, Kim JS, Lee MW (1994) Assay of ornithine aminotransferase with ninhydrin. Anal Biochem 223:205–207

    Article  CAS  Google Scholar 

  • Kishor PK, Sangam S, Amrutha R, Laxmi PS, Naidu K, Rao K, Rao S, Reddy K, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Krell A, Funck D, Plettner I, John U, Dieckmann G (2007) Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis Cylindrus (Bacillariophyceae). J Phycol 43(4):753–762

    Article  CAS  Google Scholar 

  • Lee G, Carrow RN, Duncan RR, Eiteman MA, Rieger MW (2008) Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environ Exp Bot 63:19–27

    Article  CAS  Google Scholar 

  • Lehmann S, Gumy C, Blatter E, Boeffel S, Fricke W, Rentsch D (2011) In planta function of compatible solute transporters of the AtProT family. J Exp Bot 62:787–796

    Article  CAS  Google Scholar 

  • Li Z, Peng D, Zhang X, Peng Y, Chen M, Ma X, Huang L, Yan Y (2017) Na+ induces the tolerance to water stress in white clover associated with osmotic adjustment and aquaporins-mediated water transport and balance in root and leaf. Environ Exp Bot 144:11–24

    Article  CAS  Google Scholar 

  • Lohaus G, Hussmann M, Pennewiss K, Schneider H, Zhu JJ, Sattelmacher B (2000) Solute balance of a maize (Zea mays L.) source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching. J Exp Bot 51:1721–1732

    Article  CAS  Google Scholar 

  • Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA (2002) Does proline accumulation play an active role in stress-induced growth reduction? Plant J 31:699–712

    Article  CAS  Google Scholar 

  • Maggio A, Raimondi G, Martino A, De Pascale S (2007) Salt stress response in tomato beyond the salinity tolerance threshold. Environ Exp Bot 59:276–282

    Article  CAS  Google Scholar 

  • Mansour MMF, Ali EF (2017) Evaluation of proline functions in saline conditions. Phytochemistry 140:52–68

    Article  CAS  Google Scholar 

  • Martinez JP, Lutts S, Schanck A, Bajji M, Kinet JM (2004) Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L? J Plant Physiol 161:1041–1051

    Article  CAS  Google Scholar 

  • Messedi D, Slama I, Laabidi N, Ghnaya T, Savoure A, Soltani A, Abdelly C (2006) Effect of nitrogen deficiency, salinity and drought on proline metabolism in Sesuvium portulacastrum. In: Öztürk M, Waisel Y, Khan MA, Görk G (eds) Biosaline agriculture and salinity tolerance in plants. Birkhäuser, Basel, pp 65–72

    Chapter  Google Scholar 

  • Messedi D, Farhani F, Hamed KB, Trabelsi N, Ksouri R, Athar H-u-R, Abdelly C (2016) Highlighting the mechanisms by which proline can confer tolerance to salt stress in Cakile maritima. Pak J Bot 48:417–427

    CAS  Google Scholar 

  • Molinari HBC, Marur CJ, Daros E, de Campos MKF, de Carvalho J, Bespalhok JC, Pereira LFP, Vieira LGE (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229

    Article  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Nguyen HT, Meir P, Sack L, Evans JR, Oliveira RS, Ball MC (2017) Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources. Plant Cell Environ 40:1576–1591

    Article  CAS  Google Scholar 

  • Olías R, Eljakaoui Z, Li J, de Morales PA, Marin-Manzano MC, Pardo JM, Belver A (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ 32:904–916

    Article  Google Scholar 

  • Rayapati PJ, Stewart CR (1991) Solubilization of a proline dehydrogenase from maize (Zea mays L.) mitochondria. Plant Physiol 95:787–791

    Article  CAS  Google Scholar 

  • Rodrigues CRF, Silva EN, da Mata Moura R, dos Anjos DC, Hernandez FFF, Viégas RA (2014) Physiological adjustment to salt stress in R. communis seedlings is associated with a probable mechanism of osmotic adjustment and a reduction in water lost by transpiration. Ind Crops Prod 54:233–239

    Article  CAS  Google Scholar 

  • Roosens NHCJ, Thu TT, Iskandar HM, Jacobs M (1998) Isolation of the ornithine-δ-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol 117:263–271

    Article  CAS  Google Scholar 

  • Roosens NH, Al Bitar F, Loenders K, Angenon G, Jacobs M (2002) Overexpression of ornithine-delta-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol Breed 9:73–80

    Article  CAS  Google Scholar 

  • Ruiz JM, Sánchez E, García PC, López-Lefebre LR, Rivero RM, Romero L (2002) Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock. Phytochemistry 59:473–478

    Article  CAS  Google Scholar 

  • Sanchez E, Lopez-Lefebre LR, Garcia PC, Rivero RM, Ruiz JM, Romero L (2001) Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv. Strike). J Plant Physiol 158:593–598

    Article  CAS  Google Scholar 

  • Silveira JAG, Araújo SAM, Lima JPMS, Viégas RA (2009) Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environ Exp Bot 66:1–8

    Article  CAS  Google Scholar 

  • Slama I, Messedi D, Ghnaya T, Savoure A, Abdelly C (2006) Effects of water deficit on growth and proline metabolism in Sesuvium portulacastrum. Environ Exp Bot 56:231–238

    Article  CAS  Google Scholar 

  • Slama I, Ghnaya T, Savouré A, Abdelly C (2008) Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. C R Biol 331:442–451

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  Google Scholar 

  • Taffouo V, Kenne M, Fotsop OW, Sameza M, Ndomou M, Amougou A (2006) Salinity effects on growth, ionic distribution and water content in salt-tolerant species: Gossypium hirsutum (Malvaceae). J Cam Acad Sci 6:167–174

    Google Scholar 

  • Ueda A, Shi WM, Sanmiya K, Shono M, Takabe T (2001) Functional analysis of salt-inducible proline transporter of barley roots. Plant Cell Physiol 42:1282–1289

    Article  CAS  Google Scholar 

  • Ueda A, Shi W, Nakamura T, Takabe T (2002) Analysis of salt-inducible genes in barley roots by differential display. J Plant Res 115:0119–0130

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  Google Scholar 

  • Woodrow P, Ciarmiello LF, Annunziata MG, Pacifico S, Iannuzzi F, Mirto A, D’Amelia L, Dell’Aversana E, Piccolella S, Fuggi A, Carillo P (2017) Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiol Plant 159:290–312

    Article  CAS  Google Scholar 

  • Wu Y, Wang Q, Ma Y, Chu C (2005) Isolation and expression analysis of salt up-regulated ESTs in upland rice using PCR-based subtractive suppression hybridization method. Plant Sci 168:847–853

    Article  CAS  Google Scholar 

  • Xue X, Liu A, Hua X (2009) Proline accumulation and transcriptional regulation of proline biothesynthesis and degradation in Brassica napus. BMB Rep 42:28–34

    Article  CAS  Google Scholar 

  • Yang Y, Zhang Y, Wei X, You J, Wang W, Lu J, Shi R (2011) Comparative antioxidative responses and proline metabolism in two wheat cultivars under short term lead stress. Ecotoxicol Environ Saf 74:733–740

    Article  CAS  Google Scholar 

  • Yao X, Horie T, Xue S, Leung H-Y, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI (2010) Differential sodium and potassium transport selectivities of the rice OsHKT2; 1 and OsHKT2; 2 transporters in plant cells. Plant Physiol 152:341–355

    Article  CAS  Google Scholar 

  • Yemm EW, Cocking EC, Ricketts RE (1955) The determination of amino-acids with ninhydrin. Analyst 80:209–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research (LR15CBBC02).

Author information

Authors and Affiliations

Authors

Contributions

DH: PhD Scholar conducted the experiment; CA: Professor, Design the experiment and finalize the manuscript; HA: Professor, editing and finalizing manuscript, submission to the Journal on behalf of Drosaf Messedi, handle the manuscript and will responsible for submission of responses to any query; MA: Professor, Editing and finalizing the manuscript; DM: Assistant Professor, conceive and design the experiment, writing the manuscript, the person who won the research grant for this project, corresponding author.

Corresponding authors

Correspondence to Habib-ur-Rehman Athar or Dorsaf Messedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hmidi, D., Abdelly, C., Athar, HuR. et al. Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. Physiol Mol Biol Plants 24, 1017–1033 (2018). https://doi.org/10.1007/s12298-018-0601-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-018-0601-9

Keywords

Navigation