Skip to main content
Log in

Differential response of wild and cultivated wheats to water deficits during grain development: changes in soluble carbohydrates and invertases

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Wheat, staple food crop of the world, is sensitive to drought, especially during the grain-filling period. Water soluble carbohydrates (WSCs), stem reserve mobilization and higher invertase activity in the developing grains are important biochemical traits for breeding wheat to enhance tolerance to terminal drought. These traits were studied for three accessions of Triticum dicoccoides(a tetraploid wheat progenitor species) - acc 7054 (EC 171812), acc 7079 (EC 171837) and acc 14004 (G-194-3 M-6 M) selected previously on the basis of grain filling characteristics. Check wheat cultivars- PBW-343 (a popular bread wheat cultivar for irrigated environments) and C-306 (widely adapted variety for rain-fed agriculture) were also included in this set. Analysis of variance revealed significant genotypic differences for the content of water soluble carbohydrates, activity of acid invertase and alkaline invertase. Acc 7079 was found to be a very efficient mobilizer of water soluble carbohydrates (236.43 mg g-1 peduncle DW) when averaged over irrigated and rain-fed conditions. Acid invertase activity revealed marked genotypic differences between wild and cultivated wheats. Alkaline invertase activity was highest in Acc 7079 when pooled across both the environments. On the whole, acc 7079 qualifies as a suitable donor for enhancing tolerance of bread wheat to terminal drought. The association of physio-biochemical differences observed with grain filling attributes on one hand and molecular markers on the other could be of use in improving wheat for water stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiri R, Bahraminejad S, Jalali-Honarmand S (2013) Effect of terminal drought stress on grain yield and some morphological traits in 80 bread wheat genotypes. Intl J Agric Crop Sci 5(10):1145–1153

    Google Scholar 

  • Blum A (1998) Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica 100(1–3):77–83

    Article  Google Scholar 

  • Brisson N, Gate P, Gouache D, Charmet G, Oury F-X, Huard F (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crop Res 119(1):201–212

    Article  Google Scholar 

  • Brooks A, Jenner CF, Aspirall D (1982) Effect of water deficit on endosperm starch granules and grain physiology of wheat and barley. Aust J Plant Physiol 9(4):423–436

    Article  Google Scholar 

  • Cakmak TA, Millet E, Feldman M, Fahima T, Korol A, Nevo E, Braun HJ, Ozkan H (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50(7):1047–1054

    Article  CAS  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot 89(7):907–916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cruz-Aguado JA, Rodes R, Perez IP, Dorado M (2000) Morphological characteristics and yield components associated with accumulation and loss of dry matter in internodes of wheat. Field Crop Res 66(11):129–139

    Article  Google Scholar 

  • Dey PM (1985) Change in the forms of invertases during germination of mungbean seeds. Phytochemistry 25(1):51–53

    Article  Google Scholar 

  • Dixon J, Braun HJ, Kosina P, Crouch J (2009) Wheat facts and futures. CIMMYT, Mexico

    Google Scholar 

  • Dreccer MF, van Herwaarden AF, Chapman SC (2009) Grain number and grain weight in wheat lines contrasting for stem water soluble carbohydrate concentration. Field Crop Res 112(1):43–54

    Article  Google Scholar 

  • Dubois M, Gilles KN, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for the determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Dwivedi SL, Upadhyay HD, Stalker HT, Blair MW, Bertioli DJ, Nielen S, Ortiz R (2008) Enhancing crop gene pools with beneficial traits using wild relatives. Plant Breed Rev 30:179–230

    CAS  Google Scholar 

  • Ehdaie B, Alloush GA, Madore MA, Waines JG (2006) Genotypic variation for stem reserves and mobilization in wheat. Crop Sci 46(5):2093–2103

    Article  CAS  Google Scholar 

  • Gupta AK, Kaur K, Kaur N (2011) Stem reserve mobilization and sink activity in wheat under drought conditions. Am J Plant Sci 2(1):70–77

    Article  Google Scholar 

  • Heilmeier H, Schulze ED, Whale DM (1986) Carbon and nitrogen partitioning in the biennial monocarp Arctium tomentosum Mill. Oecologia 70(3):466–474

    Article  Google Scholar 

  • Hincha DK, Rennecke P, Oliver AE (2008) Protection of liposomes against fusion during drying by oligosaccharides is not predicted by the calorimetric glass transition temperatures of the dry sugars. Eur Biophys J 37(4):503–508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson RC, Witters RE, Ciha AJ (1981) Daily patterns of apparent photosynthesis and evapotranspiration in a developing winter wheat crop. Agron J 73(3):414–418

    Article  Google Scholar 

  • Kawakami A, Sato Y, Yoshida M (2008) Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. J Exp Bot 59(4):793–802

    Article  CAS  PubMed  Google Scholar 

  • Kleijn D, Treier UA, Muller-Scharer H (2005) The importance of nitrogen and carbohydrate storage for plant growth of the alphine herb Veratrum album. New Phytol 166(2):565–575

    Article  CAS  PubMed  Google Scholar 

  • Krishnan HB, Blanchette JT, Okita TW (1985) Wheat invertases. Plant Physiol 78(2):241–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kushnir U, Halloran GM (1984) Transfer of high kernel weight and high protein from wild tetraploid wheat (Triticum turgidum dicoccoides) to bread wheat (T. aestivum) using homologous and homoeologous recombination. Euphytica 33(1):249–255

    Article  Google Scholar 

  • Lalonde S, Beebe DU, Saini HS (1997) Early signs of disruption of wheat anther development associated with the induction of male sterility by meiotic-stage water deficit. Sex Plant Reprod 10(1):40–48

    Article  Google Scholar 

  • Liang J, Zhang J, Cao X (2001) Grain sink strength maybe related to the poor grain filling of Indica- japonica rice (Oryza sativa) hybrids. Physiol Plant 112(4):470–477

    Article  CAS  PubMed  Google Scholar 

  • Loss SP, Siddique KHM (1994) Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv Agron 52(1):229–276

    Article  CAS  Google Scholar 

  • Mesfin A, Frohberg RC, Khan K, Olson TC (2000) Increased grain protein content and its association with agronomic and end-use quality in two hard red spring wheat populations derived from Triticum turgidum L. var. dicoccoides. Euphytica 116(3):237–242

    Article  CAS  Google Scholar 

  • Mesfin A, Frohberg RC, Anderson JA (1999) RFLP markers associated with high grain protein from Triticum turgidum L. var. dicoccoides introgressed into hard red spring wheat. Crop Sci 39(2):508–513

    Article  CAS  Google Scholar 

  • Nelson N (1944) A photometric adaptation of the somoghyi method for determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33(4):670–685

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Fahima T, Abbo S, Krugman T, NevoE YD, Saranga Y (2005) Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical association. Plant Cell Environ 28(2):176–191

    Article  Google Scholar 

  • Peng J, Sun D, Nevo E (2011) Wild emmer wheat, Triticum dicoccoides, occupies a pivotal position in wheat domestication process. Aust J Crop Sci 5(9):1127–1143

    Google Scholar 

  • Ranwala AP, Miller WB (1998) Sucrose cleaving enzymes and carbohydrate pool in Lilium longiflorum floral organ. Plant Physiol 103(4):541–550

    Article  CAS  Google Scholar 

  • Rawson HM, Hindmarsh JH, Fischer RA, Stockman YM (1983) Changes in leaf photosynthesis with plant ontogeny and relationships with yield per ear in wheat cultivars and 120 progeny. Aust J Plant Physiol 10(6):503–514

    Article  Google Scholar 

  • Rebetzke GJ, van Herwaarden AF, Jenkins C, Weiss M, Lewis D, Ruuska S, Tabe L, Fettell NA, Richards RA (2008) Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat. Aust J Agric Res 59(10):891–905

    Article  CAS  Google Scholar 

  • Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G (2012) Achieving yield gains in wheat. Plant Cell Environ 35(10):1799–1823

    Article  PubMed  Google Scholar 

  • Riffkin HL, Duffus CM, Bridges IC (1995) Sucrose metabolism during development in wheat (Triticum aestivum). Physiol Plant 93(1):123–131

    Article  CAS  Google Scholar 

  • Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9(12):606–613

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input, metabolism and signaling mediated by invertase: roles in development, yield potential and response to drought and heat. Mol Plant 3(6):942–955

    Article  CAS  PubMed  Google Scholar 

  • Ruuska SA, Rebetzke GJ, van Herwaarden AF, Richards RA, Fettell NA, Tabe L, Jenkins CLD (2006) Genotypic variation in water soluble carbohydrate accumulation in wheat. Funct Plant Biol 33(9):799–809

    Article  CAS  Google Scholar 

  • Shakiba MR, Ehdaie B, Madore MA, Waines JG (1996) Contribution of internode reserves to grain yield in a tall and semi dwarf spring wheat. J Genet Breed 50:91–100

    Google Scholar 

  • Shanker AK, Maheshwari M, Yadav SK, Desai S, Bhanur D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Funct Integr Genom 14(1):11–22

    Article  CAS  Google Scholar 

  • Shearman VJ, Sylvester-Bradley R, Scott RK, Foulkes MJ (2005) Physiological processes associated with wheat yield progress in UK. Crop Sci 45(1):175–185

    Google Scholar 

  • Sturm A (1999) Invertases: primary structures, functions and roles in plant development and sucrose partitioning. Plant Physiol 121(1):1–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sturm A, Tang GQ (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4(10):401–407

    Article  PubMed  Google Scholar 

  • Tymowska-Lalanne Z, Kreis M (1998) The plant invertases: physiology, biochemistry, and molecular biology. Adv Bot Res 28:71–117

    Article  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc and iron content in wheat. Science 314(5803):1298–1301

    Article  CAS  PubMed  Google Scholar 

  • Venkateswarlu B, Visperas RM (1987) Source-sink relationships in crop plants. IRRI Res Pap Ser 125:1–19

    Google Scholar 

  • Wang F, Sanz A, Brenner ML, Smith A (1993) Sucrose synthase, starch accumulation and tomato fruit sink strength. Plant Physiol 101(1):321–327

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang JR, Wei YM, Deng M, Nevo E, Yan ZH, Zheng YL (2010) The impact of single nucleotide polymorphism in monomeric alpha-amylase inhibitor genes from wild emmer wheat, primarily from Israel and Golan. BMC Evol Biol 10:170

    Article  PubMed Central  PubMed  Google Scholar 

  • Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, van Ginkel M (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149(3):289–301

    Article  CAS  Google Scholar 

  • Wardlaw IF, Willenbrink J (2000) Mobilization of fructan reserves and changes in enzyme activities in wheat stem correlate with water stress during kernel filling. New Phytol 148(3):413–422

    Article  CAS  Google Scholar 

  • Wardlaw IF (1968) The control and pattern of movement of carbohydrates in plants. Bot Rev 34(1):79–105

    Article  Google Scholar 

  • Xue GP, McIntyre CL, Jenkins CLD, Glassop D, van Herwaarden AF, Shorter R (2008) Molecular dissection of variation in carbohydrate metabolism related to water soluble carbohydrate accumulation in stems of wheat. Plant Physiol 146(2):441–454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang B, Li W, Chang X, Li R, Jing R (2014a) Effects of favorable alleles for water-soluble carbohydrates at grain filling on grain weight under drought and heat stresses in wheat. PLoS ONE 9(7):e102917. doi:10.1371/journal.pone.0102917

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Xu Y, Chen W, Dell B, Vergauwen R, Biddulph B, Khan N, Luo H, Appels R, van den Ende W (2014b) A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought. New Phytol. doi:10.1111/nph.13030

    PubMed Central  Google Scholar 

  • Zinselmeier C, Jeong BR, Boyer JS (1999) Starch and the control of kernel number in maize at low water potentials. Plant Physiol 121(1):25–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U (1995) Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J 7(1):97–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Senior author acknowledges the financial support received under Innovation in Science Pursuit for Inspired Research (INSPIRE) Programme, Department of Science and Technology, Government of India [Grant no. DST/INSPIRE Fellowship/2010 [162]]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suneja, Y., Gupta, A.K., Sharma, A. et al. Differential response of wild and cultivated wheats to water deficits during grain development: changes in soluble carbohydrates and invertases. Physiol Mol Biol Plants 21, 169–177 (2015). https://doi.org/10.1007/s12298-015-0283-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-015-0283-5

Keywords

Navigation