Skip to main content
Log in

Biochemical characterization of Santalum album (Chandan) leaf peroxidase

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The Santalum peroxidase was extracted from the leaves and precipitated with double volume of chilled acetone. The optimum percent relative activity for the Santalum peroxidase was observed at pH 5.0 and 50 °C temperature. The Santalum peroxidase per cent relative activity was stimulated in the presence of phenolic compounds like ferrulic acid and caffeic acids; however, indole-3-acetic acid (IAA) and protocatechuic acid act as inhibitors. All divalent cations Fe2+, Mn2+, Mg2+, Cu2+ and Zn2+ stimulate the relative activity of the Santalum peroxidase at concentration of 2.0 μM. Amino acids like L-alanine and L-valine activate the per cent relative activity, while L-proline and DL-methionine showed moderate inhibition for the Santalum peroxidase. However, a very low a concentration of cysteine acts as a strong inhibitor of Santalum peroxidase at the concentration of 0.4 mM. Native polyacrylamide gel electrophoresis (Native-PAGE) was performed for isoenzyme determination and two bands were observed. Km and Vmax values were calculated from Lineweaver-Burk graph. The apparent Vmax/Km value for O-dianisidine and H2O2 were 400 and 5.0 × 105 Units/min/mL respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abelskov AK, Smith AT, Rasmussen CB, Dunford HB, Welinder KG (1997) pH dependence and structural interpretation of the reactions of Coprinus cinereus peroxidase with hydrogen peroxide, ferulic acid, and 2,20-azinobis. Biochemistry 36(31):9453–9463

    Article  PubMed  CAS  Google Scholar 

  • Ahmed N, Chaplin M, Trevan M, Dey PM, Brownleader MD (1995) Purification and partial characterization of ‘extensin peroxidase’. Biochem Soc Trans 23(2):154S

    PubMed  CAS  Google Scholar 

  • Akhunov AA, Golubenko Z, Beresneva YV, Ibragimov FA, Abdurashidova NA, Mustakimova EC, Khashimova NR, Akbarova GO (2004) Physicochemical properties of cotton-leaf peroxidase. Chem Nat Comp 40(5):506–509

    Article  CAS  Google Scholar 

  • Artiukhov VG, Basharina OV, Iskusnykh A (2003) Effect of temperature on structure and functional properties of horseradish peroxidase. Ukr Biokhim Zh 75(3):45–49

    PubMed  CAS  Google Scholar 

  • Bestwick CS, Brown IR, Mansfield JW (1998) Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a non-host hypersensitive reaction in lettuce. Plant Physiol 118:1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK (2007) Hydrogen peroxide generation by pepper extracellular peroxidase CaPO2 activates local systemic cell death and defense response to bacterial pathogen. Plant Physiol 145:890–904

    Article  PubMed  CAS  Google Scholar 

  • Clemente E, Pastore GM (1998) Peroxidase and polyphenoloxidase, the importance for food technology. e Cieˆnc. Tecnol Aliment 32:167–171

    Google Scholar 

  • Clemente E, Robinson DS (1995) The termostability of purified oranges isoperoxidase. Arq Biol Tecnologia Campinas 38:1109–1118

    CAS  Google Scholar 

  • Dalal S, Gupta MN (2010) Purification and characterization of a peroxidase isozyme from Indian turnip roots. J Agric Food Chem 58(9):5545–5552

    Article  PubMed  CAS  Google Scholar 

  • Delannoy E, Marmey P, Penel C, Nicole M (2004) Les peroxidases vegetables de classes III. Acta Bot Gall 151:353–380

    CAS  Google Scholar 

  • Dubey A, Diwakar SK, Rawat SK, Kumar P, Batra N, Joshi A, Singh J (2007) Characterization of ionically bound peroxidases from apple (Mallus pumilus) fruits. Prep Biochem Biotechnol 37:47–58

    Article  PubMed  CAS  Google Scholar 

  • Dunford HB (1999) Heme peroxidase nomenclature; plant peroxidase news letter. Plant Biochemistry and Physiology, University of Geneva, pp 65–71

    Google Scholar 

  • Fagerstedt KV, Kukkola EM, Koistinen VT, Takahashi J, Marjamaa K (2010) Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. J Integative Plant Biol 52(2):186–194

    Article  CAS  Google Scholar 

  • Faivre-Rampant O, Kevers C, Bellini C, Gaspar T (1998) Peroxidase activity, ethylene production, lignifications and growth limitation in shoots of a non rooting mutant of tobacco. Plant Physiol 36:837–877

    Google Scholar 

  • Glaszmann JC, Fautret A, Noyer JL, Feldmann P, Lanaud C (1989) Biochemical genetic markers in sugarcane. Theor Appl Genet 7:8537

    Google Scholar 

  • Hager J, Houda B, Michel R, Gisele B, Elisabeth J, Ezzeddine EF (2008) Partial purification and characterization of a copper-induced anionic peroxidase of sunflower roots. Plant Physiol Biochem 46(8–9):760–767

    Google Scholar 

  • Hendricks T, Wijsman HJ, van Loon LC (1991) Petunia peroxidase: isolation, purification and characterization. Eur J Biochem 199:139–146

    Article  Google Scholar 

  • Hiraga S, Sazaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468

    Article  PubMed  CAS  Google Scholar 

  • Kamal JK, Behere DV (2003) Activity, stability and conformational flexibility of seed coat soybean peroxidase. J Inorg Biochem 94(3):236–242

    Article  PubMed  CAS  Google Scholar 

  • Kawaoka A, Matsunaga E, Endo S, Kondo S, Yoshida K, Shinmyo A, Ebinuma H (2003) Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen. Plant Physiol 132(3):1177–1185

    Article  PubMed  CAS  Google Scholar 

  • Koksal E, Gulcin İ (2008a) Antioxidant activity of cauliflower (Brassica oleracea L.). Turk J Agric For 32:462–468

    Google Scholar 

  • Koksal E, Gulcin İ (2008b) Purification and characterization of peroxidase from cauliflower (Brassica oleracea L.) buds. Prot Peptide Letters 15:320–326

    Article  CAS  Google Scholar 

  • Kolattukudy PE (2001) Polyester in higher plants. In: Udy PE, Babel W, Steinbuchel A (eds) Advances in biochemical engineering/biotechnology. Springer- Verlag, Heidelberg, Germany, pp 1–49

    Google Scholar 

  • Kumar P, Kamle M, Singh J, Rao DP (2008) Isolation and characterization of peroxidase from the leaves of Ricinus communis. Int J Biotech Biochem 4(4):283–292

    Google Scholar 

  • Laemmli DK (1970) Cleavage of structural proteins during in assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee MY (2002) Effect of Na2SO3 on the activities of antioxidant enzymes in geranium seedlings. Phytochemistry 59:493–499

    Article  PubMed  CAS  Google Scholar 

  • Lineweaver H, Burk DJ (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Maciel HPF, Gouvêa CMCP, Toyama M, Marcus Smolka M, Marangoni S, Pastore GM (2007) Extraction, purification and biochemical characterization of a peroxidase from copaifera langsdorffii leaves. Quim Nova 30(5):1067–1071

    Article  CAS  Google Scholar 

  • Mader M, Fussl R (1982) Role of peroxidase in lignification of tobacco cells. Plant Physiol 70:1132–1134

    Article  PubMed  CAS  Google Scholar 

  • Malabadi RB, Nataraja K (2002) Peroxidase activity as a marker of xylogenesis in the culture cell of Psidium guajava Cv. Navaloor Ind J Fores 25:196–200

    Google Scholar 

  • Manjunatha BR, Virupakshi S, Naik GR (2003) Peroxidase isozyme polymorphism in popular sugarcane cultivars. Curr Sci 85(9):1347–1349

    CAS  Google Scholar 

  • Marcel AK, Jansen RE, van den Noort MY, Adillah TEPL, Mark L, Roger TNF (2001) Phenol-oxidizing peroxidases: contribute to the protection of plants from ultraviolet radiation stress. Plant Physiol 126:1012–1023

    Article  Google Scholar 

  • Moulding PH, Grant HF, McLellan KM, Robinson DS (1987) Heat stability of soluble and ionically bound peroxidases extracted from apples. Intl J Food Sci Technol 22:391–397

    Article  CAS  Google Scholar 

  • Nair AR, Showalter AM (1996) Purification and characterization of a wound inducible cell wall cationic peroxidase from carrot. Biochem Biophys Res Comm 226:254–260

    Article  PubMed  CAS  Google Scholar 

  • Nelson DL, Cox MM (2007) Enzymes. In: Lehninger principal of biochemistry. pp 200–201.

  • Neves VA (2002) Ionically bound peroxidase from peach fruit. Braz Arch Biol Technol 45:7

    Article  CAS  Google Scholar 

  • Neves VA, Lourenço EJ (1998) Peroxidase from peach fruit: thermal stability. Braz Arch Biol Technol 41(2):179–186

    CAS  Google Scholar 

  • Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:534–540

    Article  PubMed  CAS  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 5:255–265

    Article  Google Scholar 

  • Paul KG (1986) Peroxidase, historical background. In: Greppin H, Penel C, Gaspar T (eds) Molecular and physiological aspects of plant peroxidases. University of Geneva, Switzerland, pp 1–14

    Google Scholar 

  • Quiroga M, Guerrero C, Botella MA, Barcelo AI, Medina MI, Alonso FJ, de Forchetti SM, Tigier H, Valpuesta V (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122:119–1127

    Article  Google Scholar 

  • Ryan O, Smyth MR, Fagain CO (1994) Horseradish peroxidase: the analyst’s friend. Essays Biochem 28:129–146

    PubMed  CAS  Google Scholar 

  • Sakharov IY, Blanco MKV, Sakharova IV (2002) Substrate specificity of African oil palm tree peroxidase. Biochemistry (Moscow) 67:1043–1047

    Article  CAS  Google Scholar 

  • Silva E, Lourenço EJ, Neves VA (1990) Soluble and bound peroxidase from papaya fruit. Phytochemistry 29:1051–1056

    Article  Google Scholar 

  • Singh J, Dubey A, Diwakar SK, Rawat SK, Batra N, Joshi A (2010) Biochemical characterization of peroxidases from the fruits of Mallus pumilus. Int Res J Biotech 1(4):50–58

    Google Scholar 

  • Slatnar A, Mikulic PM, Halbwirth H, Stampar F, Stich K, Veberic (2010) Enzyme activity of the phenylpropanoid pathway as a response to apple scab infection. Ann Appl Biol 156(3):449–456

  • Soda I, Hasegawa T, Suzuki T, Ogura N (1991) Purification and some properties of peroxidase from kiwifruit. Agric Biol Chem 55:1677–1678

    CAS  Google Scholar 

  • Šukalović VHT, Veljović-Jovanović S, Dragišić, Maksimović J, Maksimović V, Pajić Z (2010) Characterisation of phenol oxidase and peroxidase from maize silk. Plant Biol 12(3):406–413

  • Suma TB, Balasundaran M (2003) Isozyme variation in five provenances of Santalum album in India. Austr J Bot 51(3):243–249

    Article  CAS  Google Scholar 

  • Tao DL, Oquist G, Wingsle G (1998) Active oxygen scavengers during cold acclimation of scots pine seedlings in relation to freezing tolerance. Cryobiology 37(1):38–45

    Article  PubMed  CAS  Google Scholar 

  • Torres F, Tinoco R, Vazquez-Duhalt R (1997) Biocatalytic oxidation of polycyclic aromatic hydrocarbons in media containing organic solvents. Water Sci Tecnol 36:37

    Article  CAS  Google Scholar 

  • Vallejos CE (1983) Enzyme activity staining. In: Tanksley SD, Orton TS (eds) Isozymes in plant genetics and breeding. Elsevier, Amsterdam, p 469

    Google Scholar 

  • Vamos-Vigyazo L (1981) Polyphenol oxidase and peroxidase in fruits and vegetables. CRC Crit Rev Food Sci Nutr 15:49–127

    Article  CAS  Google Scholar 

  • Vitali A, Botta B, Delle MG, Zappitelli S, Ricciardi P, Melino S, Petruzelli R, Giardina B (1998) Purification and partial characterization of a peroxidase from plant cell cultures of Cassia didymobotrya and biotransformation studies. Biochem J 331:513–519

    PubMed  CAS  Google Scholar 

  • Wang SY, Gong YS, Zhou JJ (2008) Chromatographic isolation and characterization of a novel peroxidase from large lima legumes. J Food Science 74(3):193–198

    Article  Google Scholar 

  • Welinder KG, Mazza G (1977) Amino-acid sequences of heme-linked, histidine-containing peptides of five peroxidases from horseradish and turnip. Eur J Biochem 73:353

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Taylor KE, Biswas N, Bewtra JK (1998) A model for the protective effect of additives on the activity of horseradish peroxidase in the removal of phenol. Enz Microbiol Biotechnol 22:315

    Article  CAS  Google Scholar 

  • Yamazaki J, Yokota K (1973) Oxidation states of peroxidase. Mol Cell Biochem 2:39–52

    Article  PubMed  CAS  Google Scholar 

  • Yi KW, Lee MY (2003) Environmental stress-induced extracellular isoperoxidase RC3 from rice. J Environ Biol 24:17–22

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors are highly thankful to Department of Biotechnology, D. D. U. University, Gorakhpur, (U. P.) India, for providing necessary financial support to carrying out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Kamle, M. & Singh, J. Biochemical characterization of Santalum album (Chandan) leaf peroxidase. Physiol Mol Biol Plants 17, 153–159 (2011). https://doi.org/10.1007/s12298-011-0054-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-011-0054-x

Keywords

Navigation