Skip to main content
Log in

Crop genotype and a novel symbiotic fungus influences the root endophytic colonization potential of plant growth promoting rhizobacteria

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Effect of plant genotype on the root endophytic colonization ability of a plant growth promoting rhizobacteria (PGPR), Pseudomonas striata was undertaken in this study. Use of a lac-Z tagged P. striata strain showed that, it can exist as an endophyte and the plant genotype determines the performance of the inoculated PGPR. The cultivars of Zea mays L. (maize) and Vigna radiata L. (mung bean) tested showed differential affinity to the PGPR (P. striata) as reflected by a significant variation in the root endophytic colonization ability of P. striata. Coinoculation with a novel symbiotic fungus Piriformospora indica was found to stimulate endophytic colonization of P. striata in both maize and mungbean. The root exudates of maize and mungbean cultivars showed variations in the total sugar and amino acid contents. However, no consistent relationship was recorded between the concentrations of these metabolites and endophytic colonization of the added PGPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PGPR:

Plant growth promoting rhizobacteria

P. striata:

Pseudomonas striata

P. indica:

Piriformospora indica

Zea mays L.:

Maize

Vigna radiata L.:

Mung bean

References

  • Bais HP, Weir TL, Perry LG, Gilroy S and Vivanco JM (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Ann. Rev. Plant Biol 57: 233–266.

    Article  CAS  Google Scholar 

  • Bais HP, Prithiviraj B, Jha AK, Ausubel FM and Vivanco JM (2005). Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature 434: 217–221.

    Article  PubMed  CAS  Google Scholar 

  • Benizri E, Baudoin E and Guckert A (2001). Root colonization by inoculated plant growth promoting rhizobacteria. Biocontrol Sci. Technol 11: 557–574.

    Article  Google Scholar 

  • Bosco M, Baruffa E and Picard C (2006). Organic breeding should select for plantgenotypes able to efficiently exploit indigenous Probiotic Rhizobacteria. Paper presented at the European Joint Congress ‘Organic Farming and European Rural Development. May 30–31: 376–377.

  • Bucio JL, Campos-Cuevas JC, Hernandez-Calderon E, Valasquez-Bacerra C, Farias-Rodriguez R, Macias-Rodriguez LI and Valencia-Cantero E (2007). Bacillus magaterium rhizobacteria promote growth and alter root system architecture through an auxin and ethyleneindependent signaling mechanism in Arabidopsis thaliana. Mol. Plant Microbe Interactions 20: 207–217.

    Article  CAS  Google Scholar 

  • Buee M, Rossignol M, Jauneau A, Ranjeva R and Bécard G (2000). The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol. Plant-Microbe Interact 13: 693–698.

    Article  PubMed  CAS  Google Scholar 

  • Burdman S, Dulguerova G, Okon Y and Jurkevitch E (2001). Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation. Mol. Plant- Microbe Interact 14: 555–558.

    Article  PubMed  CAS  Google Scholar 

  • Chabot R, Antoun H. and Cesias MP (1996). Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum biovar. Phaseoli. Plant Soil 184: 311–321.

    Article  CAS  Google Scholar 

  • Duineveld BM, Kowalchuk GA, Keijzer A and Van Elas JD (2001). Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl. Environ. Microbiol., 67: 172–178.

    Article  PubMed  CAS  Google Scholar 

  • Germida JJ, Sicillano SD, Defreitas JR and Seib AM (1998). Diversity of root-associated bacteria associated with field grown canola (Brassica napus L.) and wheat (Triticum aestivum L.) FEMS Microb. Ecol 26: 43–50.

    Article  CAS  Google Scholar 

  • Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T and Achouak W (2008). Plant host habitat and root exudates shape soil bacterial community structure. Eur. J. Plant Pathol 122: 395–401.

    Article  CAS  Google Scholar 

  • Jones DL, Kuzyakov Y and Hodge A (2004). Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163: 459–480.

    Article  CAS  Google Scholar 

  • Kaefer E (1977). Meiotic and Mitotic recombination in Aspergillus and its chromosomal aberrations. Advances Genet 19: 33–131.

    Article  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L and Roldan A (2007). Interaction between a PGPR, an AM fungus and a phosphate solubilizing fungus in the rhizosphere of Lactuca sativa. Appl. Soil Ecol 35: 480–487.

    Article  Google Scholar 

  • Lemanceau P, Corberand T, Gardan L, Labour X, Laguerre G, Boeufgras J and Alabouvette L (1995). Effect of two plant species, flax (Linum usitatissimum L.) and tomato (Lycopersicon esculentum Mill.) on the diversity of soilborne populations of fluorescent Pseudomonads. Appl. Environ. Microbiol 61: 1004–1012.

    PubMed  CAS  Google Scholar 

  • Marschner H, Treeby M, Romheld V (1989). Role of rootinduced changes in the rhizosphere for iron acquisition in higher plants. Z Pflanzenernahr Bodenk 152: 197–204.

    Article  CAS  Google Scholar 

  • Miller JH (1972). Experiments in molecular genetics. Cold spring Harbour Lab., Cold Spring Harbour, New York.

    Google Scholar 

  • McInroy JA and Kloepper JW (1995). Population dynamics of endophytic bacteria in field grown sweet corn and cotton. Can. J. Microbiol 41: 895–901.

    Article  CAS  Google Scholar 

  • Moore S and Stein WH (1948). In: Methods Enzymol. (Eds. Colowick SP and Kaplan ND), Academic press, New York, 3: 468.

    Google Scholar 

  • Nehl DB, Allen S and Brown JF (1997). Deleterious rhizosphere bacteria: an integrating perspective. Appl. Soil. Ecol 5: 1–20.

    Article  Google Scholar 

  • Peters NK and Long SR (1988). Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plt. Physiol 88: 396–400.

    Article  CAS  Google Scholar 

  • Pikovskaya RE (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologia 17: 362.

    CAS  Google Scholar 

  • Roesti D, Ineichen k, Braissant O, Redecker D, Wiemken A and Aragno M (2005). Bacteria Associated with Spores of the Arbuscular Mycorrhizal Fungi Glomus geosporum and Glomus constrictum. Appl. Environ. Microbiol 71: 6673–6679.

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Priefer U and Pahter A (1983). A broad host range mobilization system for in vivo genetic engineering: Transporon mutagenesis in gram negative bacteria. Biotechnol 1: 784–791.

    Article  CAS  Google Scholar 

  • Smith SE and Read DJ (1997). Mycorrhizal symbiosis. Academic Press, San Diego. Calif.

    Google Scholar 

  • Singh BK, Nunan N, Ridgway KP, McNicol J, Young JPW, Daniell TJ, Prosser JI and Millard P (2008). Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots. Env. Microbiol 10: 534–541.

    Article  CAS  Google Scholar 

  • Singh G and Mukerji KG (2006). Root exudates as determinant of rhizospheric microbial biodiversity. Soil Biol 7: 39–53.

    Article  CAS  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004). Rhizosphere bacterial signalling: a love parade beneath our feet. Crit. Rev. Microbiol 30: 205–235.

    Article  PubMed  CAS  Google Scholar 

  • Steinkellner S, Mammerler R, Vierheilig H (2008). Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum strains. Eur. J. Plant Pathol 122: 395–401.

    Article  CAS  Google Scholar 

  • Varma A, Verma S, Sudha N, Buetehorn B and Franken P (1999). Piriformospora indica, a cultivable plant growth promoting root endophyte. Appl. Environ. Microbiol 65: 2741–2744.

    PubMed  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E and Vivanco JM (2003). Root exudation and rhizosphere biology. Plant Physiol 132: 44–51.

    Article  PubMed  CAS  Google Scholar 

  • Weir TL, Park SW and Vivanco JM (2004). Biochemical and physiological mechanisms mediated by allelochemicals. Curr. Opin. Plant Biol 7: 472–479.

    Article  PubMed  CAS  Google Scholar 

  • Werner D (2001). Organic signals between plants and microorganisms. In: Rhizosphere, biochemistry and organic substances at the soil-plant interface, (Eds. Pinton R, Varanini Z, Nannipieri P) Marcel Dekker, New York, 197–222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geeta Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, G., Singh, N. & Marwaha, T.S. Crop genotype and a novel symbiotic fungus influences the root endophytic colonization potential of plant growth promoting rhizobacteria. Physiol Mol Biol Plants 15, 87–92 (2009). https://doi.org/10.1007/s12298-009-0009-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-009-0009-7

Key words

Navigation