Skip to main content
Log in

Protein Carbonyl, Lipid Peroxidation, Glutathione and Enzymatic Antioxidant Status in Male Wistar Brain Sub-regions After Dietary Copper Deficiency

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Copper a quintessential transitional metal is required for development and function of normal brain and its deficiency has been associated with impairments in brain function. The present study investigates the effects of dietary copper deficiency on brain sub-regions of male Wistar rats for 2-, 4- and 6-week. Pre-pubertal rats were divided into four groups: negative control (NC), copper control (CC), pairfed (PF) and copper deficient (CD). In brain sub regions total protein concentration, glutathione concentration and Cu–Zn SOD activity were down regulated after 2-, 4- and 6 weeks compared to controls and PF groups. Significant increase in brain sub regions was observed in protein carbonyl and lipid peroxidation concentration as well as total SOD, Mn SOD and catalase activities after 2-, 4- and 6 weeks of dietary copper deficiency. Experimental evidences indicate that impaired copper homeostasis has the potential to generate reactive oxygen species enhancing the susceptibility to oxidative stress by inducing up- and down-regulation of non-enzymatic and enzymatic profile studied in brain sub regions causing loss of their normal function which can consequently lead to deterioration of cell structure and death if copper deficiency is prolonged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruiz LM, Libedinsky A, Elorza AA. Role of copper on mitochondrial function and metabolism. Front Mol Biosci. 2021;8:711227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol. 2014;116:33–57.

    Article  CAS  PubMed  Google Scholar 

  3. Tishchenko KI, Beloglazkina EK, Mazhuga AG, Zyk NV. Copper-containing enzymes: site types and low-molecular-weight model compounds. Rev J Chem. 2016;6(1):49–82.

    Article  CAS  Google Scholar 

  4. Song M, Vos MB, McClain CJ. Copper-fructose interactions: a novel mechanism in the pathogenesis of NAFLD. Nutrients. 2018;10(11):1815.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Uauy R, Olivares M, Gonzalez M. Essentiality of copper in humans. Am J Clin Nutr. 1998;67:952S-S959.

    Article  CAS  PubMed  Google Scholar 

  6. Osredkar C. Zinc, biological role and significance of copper/zinc imbalance. J Clin Toxicol. 2011;3(2161):0495.

    Google Scholar 

  7. Kaler SG, Liew CJ, Donsante A, Hicks JD, Sato S, Greenfield JC. Molecular correlates of epilepsy in early diagnosed and treated Menkes disease. J Inherit Metab Dis. 2010;33(5):583–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Singhal A, Morris VB, Labhasetwar V, Ghorpade A. Nanoparticle-mediated catalase delivery protects human neurons from oxidative stress. Cell Death Dis. 2013;4(11):e903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robinson NJ, Winge DR. Copper metallochaperones. Annu Rev Biochem. 2010;79:537–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Palumaa P. Copper chaperones: the concept of conformational control in the metabolism of copper. FEBS Lett. 2013;587(13):1902–10.

    Article  CAS  PubMed  Google Scholar 

  11. Palm R, Wahlström G, Hallmans G. Age related changes in weight and the concentrations of zinc and copper in the brain of the adult rat. Lab Anim. 1990;24(3):240–5.

    Article  CAS  PubMed  Google Scholar 

  12. D’Ambrosi N, Rossi L. Copper at synapse: release, binding and modulation of neurotransmission. Neurochem Int. 2015;90:36–45.

    Article  CAS  PubMed  Google Scholar 

  13. Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids. 2003;25(3):207–18.

    Article  CAS  PubMed  Google Scholar 

  14. Ozcelik D, Uzun H. Copper intoxication; antioxidant defenses and oxidative damage in rat brain. Biol Trace Elem Res. 2009;127(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  15. Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. 2012. https://doi.org/10.1155/2012/736837.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lindenau J, Noack H, Possel H, Asayama K, Wolf G. Cellular distribution of superoxide dismutases in the rat CNS. Glia. 2000;29(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Z, Kang YJ. Cellular and subcellular localization of catalase in the heart of transgenic mice. J Histochem Cytochem. 2000;48(5):585–94.

    Article  CAS  PubMed  Google Scholar 

  18. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  19. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–78.

    Article  CAS  PubMed  Google Scholar 

  20. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.

    Article  CAS  PubMed  Google Scholar 

  21. Brehe JE, Burch HB. Enzymatic assay for glutathione. Anal Biochem. 1976;74(1):189–97.

    Article  CAS  PubMed  Google Scholar 

  22. Palamanda JR, Kehrer JP. Inhibition of protein carbonyl formation and lipid peroxidation by glutathione in rat liver microsomes. Arch Biochem Biophys. 1992;293(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  23. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469–74.

    Article  CAS  PubMed  Google Scholar 

  24. Geller BL, Winge DR. A method for distinguishing Cu, Zn-and Mn-containing superoxide dismutases. Anal Biochem. 1983;128(1):86–92.

    Article  CAS  PubMed  Google Scholar 

  25. Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47(2):389–94.

    Article  CAS  PubMed  Google Scholar 

  26. Prohaska JR, Wells WW. Copper deficiency in the developing rat brain: a possible model for Menkes’ steely-hair disease. J Neurochem. 1974;23(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  27. Lutsenko S, Bhattacharjee A, Hubbard AL. Copper handling machinery of the brain. Metallomics. 2010;2(9):596–608.

    Article  CAS  PubMed  Google Scholar 

  28. Rossi L, Arciello M, Capo C, Rotilio G. Copper imbalance and oxidative stress in neurodegeneration. Ital J Biochem. 2006;55(3–4):212–21.

    CAS  PubMed  Google Scholar 

  29. Cholewińska E, Fotschki B, Juśkiewicz J, Rusinek-Prystupa E, Ognik K. The effect of copper level in the diet on the distribution, and biological and immunological responses in a rat model. J Anim Feed Sci. 2018;27(4):349–60.

    Article  Google Scholar 

  30. Cholewińska E, Ognik K, Fotschki B, Zduńczyk Z, Juśkiewicz J. Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS ONE. 2018;13(5):e0197083.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shringarpure R, Grune T, Davies KJ. Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell Mol Life Sci. 2001;58(10):1442–50.

    Article  CAS  PubMed  Google Scholar 

  32. Dasuri K, Zhang L, Keller JN. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med. 2013;62:170–85.

    Article  CAS  PubMed  Google Scholar 

  33. Di Domenico F, Head E, Butterfield DA, Perluigi M. Oxidative stress and proteostasis network: culprit and casualty of Alzheimer’s-like neurodegeneration. Adv Geriatr. 2014;2014:1.

    Article  Google Scholar 

  34. Redies C, Hoffer LJ, Beil C, Marliss EB, Evans AC, Lariviere F, et al. Generalized decrease in brain glucose metabolism during fasting in humans studied by PET. Am J Physiol Endocrinol Metab. 1989;256(6):E805–10.

    Article  CAS  Google Scholar 

  35. Gonos ES, Kapetanou M, Sereikaite J, Bartosz G, Naparło K, Grzesik M, et al. Origin and pathophysiology of protein carbonylation, nitration and chlorination in age-related brain diseases and aging. Aging (Albany NY). 2018;10(5):868.

    Article  CAS  PubMed  Google Scholar 

  36. Bhor VM, Raghuram N, Sivakami S. Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. Int J Biochem Cell Biol. 2004;36(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang X, Li Z, Zhang Q, Chen L, Huang X, Zhang Y, et al. Mechanisms underlying H2O2-evoked carbonyl modification of cytoskeletal protein and axon injury in PC-12 cells. Cell Physiol Biochem. 2018;48(3):1088–98.

    Article  CAS  PubMed  Google Scholar 

  38. Cao Q, Ong WY, Halliwell B. Lipid peroxidation in the postnatal rat brain. Exp Brain Res. 2001;137(2):205–13.

    Article  CAS  PubMed  Google Scholar 

  39. Ognik K, Tutaj K, Cholewińska E, Cendrowska-Pinkosz M, Dworzański W, Dworzańska A, et al. The effect of a rat diet without added Cu on redox status in tissues and epigenetic changes in the brain. Ann Anim Sci. 2020;20(2):503–20.

    Article  CAS  Google Scholar 

  40. Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain: metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem. 2000;267(16):4912–6.

    Article  CAS  PubMed  Google Scholar 

  41. Wüllner U, Seyfried J, Groscurth P, Beinroth S, Winter S, Gleichmann M, et al. Glutathione depletion and neuronal cell death: the role of reactive oxygen intermediates and mitochondrial function. Brain Res. 1999;826(1):53–62.

    Article  PubMed  Google Scholar 

  42. Seyfried J, Soldner F, Schulz JB, Klockgether T, Kovar KA, Wüllner U. Differential effects of L-buthioninesulfoximine and ethacrynic acid on glutathione levels and mitochondrial function in PC12 cells. Neurosci lett. 1999;264(1–3):1–4.

    Article  CAS  PubMed  Google Scholar 

  43. Regan RF, Guo Y. Magnesium deprivation decreases cellular reduced glutathione and causes oxidative neuronal death in murine cortical cultures. Brain Res. 2001;890(1):177–83.

    Article  CAS  PubMed  Google Scholar 

  44. Li HT, Jiao M, Chen J, Liang Y. Roles of zinc and copper in modulating the oxidative refolding of bovine copper, zinc superoxide dismutase. Acta Biochim Biophys Sin. 2010;42(3):183–94.

    Article  CAS  PubMed  Google Scholar 

  45. Penkowa M, Giralt M, Thomsen PS, Carrasco J, Hidalgo J. Zinc or copper deficiency-induced impaired inflammatory response to brain trauma may be caused by the concomitant metallothionein changes. J Neurotrauma. 2001;18(4):447–63.

    Article  CAS  PubMed  Google Scholar 

  46. Wang J, Chen J, Tang Z, Li Y, Hu L, Pan J. The effects of copper on brain microvascular endothelial cells and claudin via apoptosis and oxidative stress. Biol Trace Elem Res. 2016;174(1):132–41.

    Article  CAS  PubMed  Google Scholar 

  47. Gambling L, McArdle HJ. Iron, copper and fetal development. Proc Nutr Soc. 2004;63(4):553–62.

    Article  CAS  PubMed  Google Scholar 

  48. Wu T, Xiong K, He J. Effect of different copper levels in feed on antioxidant capacity in stocking the native sheep in the wumeng prairie. Pol J Environ Stud. 2021;30(4):3843–8.

    Article  CAS  Google Scholar 

  49. Prohaska JR, Broderius M, Brokate B. Metallochaperone for Cu, Zn-superoxide dismutase (CCS) protein but not mRNA is higher in organs from copper-deficient mice and rats. Arch Biochem Biophys. 2003;417(2):227–34.

    Article  CAS  PubMed  Google Scholar 

  50. Yokoyama A, Ohno K, Hirano A, Shintaku M, Kato M, Hayashi K, et al. Cerebellar expression of copper chaperone for superoxide, cytosolic Cu/Zn-superoxide dismutase, 4-hydroxy-2-nonenal, acrolein and heat shock protein 32 in patients with Menkes kinky hair disease: immunohistochemical study. Yonago Acta Med. 2014;57(1):23.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Acarin L, Peluffo H, Barbeito L, Castellano B, González B. Astroglial nitration after postnatal excitotoxic damage: correlation with nitric oxide sources, cytoskeletal, apoptotic and antioxidant proteins. J Neurotrauma. 2005;22(1):189–200.

    Article  PubMed  Google Scholar 

  52. Huang HF, Guo F, Cao YZ, Shi W, Xia Q. Neuroprotection by manganese superoxide dismutase (M n SOD) mimics: antioxidant effect and oxidative stress regulation in acute experimental stroke. CNS Neurosci Ther. 2012;18(10):811–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu J, Church SJ, Patassini S, Begley P, Waldvogel HJ, Curtis MA, et al. Evidence for widespread, severe brain copper deficiency in Alzheimer’s dementia. Metallomics. 2017;9(8):1106–19.

    Article  CAS  PubMed  Google Scholar 

  54. Candas D, Li JJ. MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal. 2014;20(10):1599–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Legleiter LR, Spears JW, Liu HC. Copper deficiency in the young bovine results in dramatic decreases in brain copper concentration but does not alter brain prion protein biology. J Anim Sci. 2008;86(11):3069–78.

    Article  CAS  PubMed  Google Scholar 

  56. Gaetke LM, Chow CK. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology. 2003;189(1–2):147–63.

    Article  CAS  PubMed  Google Scholar 

  57. Nazıroğlu M. Molecular role of catalase on oxidative stress-induced Ca2+ signaling and TRP cation channel activation in nervous system. J Recept Signal Transduct. 2012;32(3):134–41.

    Article  Google Scholar 

  58. Zucconi GG, Cipriani S, Scattoni R, Balgkouranidou I, Hawkins DP, Ragnarsdottir KV. Copper deficiency elicits glial and neuronal response typical of neurodegenerative disorders. Neuropathol Appl Neurobiol. 2007;33(2):212–25.

    Article  CAS  PubMed  Google Scholar 

  59. Gybina AA, Tkac I, Prohaska JR. Copper deficiency alters the neurochemical profile of developing rat brain. Nutr Neurosci. 2009;12(3):114–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Penland JG, Prohaska JR. Abnormal motor function persists following recovery from perinatal copper deficiency in rats. J Nutr. 2004;134(8):1984–8.

    Article  CAS  PubMed  Google Scholar 

  61. Wojciak RW. Effect of food restriction diets on copper concentration and copper/zinc ratio in tissues of female Wistar rats (animal anorexia model). Trace Elem Electroly. 2013;30(4):185–90.

    Article  CAS  Google Scholar 

  62. Shila S, Kokilavani V, Subathra M, Panneerselvam C. Brain regional responses in antioxidant system to α-lipoic acid in arsenic intoxicated rat. Toxicology. 2005;210(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  63. Wang X, Michaelis EK, Foster TC, Foster TC. Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci. 2010;2:12.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur, India for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankita Rajendra Kurup.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurup, A.R., Nair, N. Protein Carbonyl, Lipid Peroxidation, Glutathione and Enzymatic Antioxidant Status in Male Wistar Brain Sub-regions After Dietary Copper Deficiency. Ind J Clin Biochem 39, 73–82 (2024). https://doi.org/10.1007/s12291-022-01093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-022-01093-1

Keywords

Navigation