Skip to main content
Log in

Introduction to the level-set full field modeling of laths spheroidization phenomenon in α/β titanium alloys

International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The fragmentation of α lamellae and the subsequent spheroidization of α laths, in α/β titanium alloys, are well known phenomena, occurring during and after deformation. We will illustrate the development of a new finite element methodology to model these phenomena. This new methodology is based on a level set framework modeling the deformation and the ad hoc concurrent or subsequent interfaces kinetics. In the current paper, we will focus on the modeling of the surface diffusion at the α/β phase interfaces and the motion by mean curvature at the α/α grain interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Lütjering G, Williams J (2007) Titanium. Springer, Heidelberg

    Google Scholar 

  2. Semiatin SL, Furrer DU (2008) Modeling of microstructure evolution during the thermomechanical processing of titanium alloys. Technical paper preprint. Air Force Research Lab

  3. Li X, Bottler F, Spatschek R, Schmitt A, Heilmaier M, Stein F (2017) Coarsening kinetics of lamellar microstructures: Experiments and simulations on a fully-lamellar Fe-Al in situ composite. Acta Mater 127:230–243

    Article  Google Scholar 

  4. Voorhees PW (1985) The theory of Ostwald ripening. J Stat Phys 38:231–252

    Article  Google Scholar 

  5. Mullins W (1958) The effect of thermal grooving on grain boundary motion. Acta Metall 6:414–427

    Article  Google Scholar 

  6. Bruchon J, Pino Muñoz D, Valdivieso F, Drapier S, Pacquaut G (2010) 3D simulation of the matter transport by surface diffusion within a Level-Set context. Eur J Comp Mech 19:281–292

    Article  MATH  Google Scholar 

  7. Derkach V (2010) Surface evolution and grain boundary migration in a system of 5 grains. M.Sc. thesis, Department of Mathematics, Technion–Israel Institute of Technology

  8. Derkach V, Novick-Cohen A, Vilenkin A, Rabkin E (2014) Grain boundary migration and grooving in thin 3-D systems. Acta Mater 65:194–206

    Article  Google Scholar 

  9. Smereka P (2003) Semi-implicit level set methods for curvature and surface diffusion motion. J Sci Comput 19:439–456

    Article  MathSciNet  MATH  Google Scholar 

  10. Osher S, Fedkiw F (2001) Level Set Methods: An Overview and Some Recent Results. J Comput Phys 169:463–502

    Article  MathSciNet  MATH  Google Scholar 

  11. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press, Cambridge

  12. Bernacki M, Logé R, Coupez T (2011) Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials. Scr Mater 64:525–528

    Article  Google Scholar 

  13. Bernacki M, Chastel Y, Coupez T, Logé R (2008) Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials. Scr Mater 58:1129–1132

    Article  Google Scholar 

  14. Burger M, Hausser F, Stocker C, Voigt A (2007) A level-set approach to anisotropic flows with curvature regularization. J Comput Phys 225:183–205

    Article  MathSciNet  MATH  Google Scholar 

  15. Bruchon J, Drapier S, Valdivieso F (2011) 3D finite element simulation of the matter flow by surface diffusion using a level set method. Int J Numer Methods Eng 86:845–861

    Article  MATH  Google Scholar 

  16. Bernacki M, Resk H, Coupez T, Logé R (2009) Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework. Model Simul Mater Sci Eng 17:064006

    Article  Google Scholar 

  17. Shakoor M, Scholtes B, Bouchard P-O, Bernacki M (2015) An efficient and parallel level set reinitialization method - application to micromechanics and microstructural evolutions. Appl Math Model 39:7291–7302

    Article  MathSciNet  Google Scholar 

  18. Scholtes B, Boulais-Sinou R, Settefrati A, Pino Muñoz D, Poitrault I, Montouchet A, Bozzolo N, Bernacki M (2016) 3D level set modeling of static recrystallization considering stored energy fields. Comput Mater Sci 122:57–71

    Article  Google Scholar 

  19. Gruau C, Coupez T (2005) 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Comput Methods Appl Mech Eng 194:4951–4976

    Article  MathSciNet  MATH  Google Scholar 

  20. Shakoor M, Bernacki M, Bouchard P-O (2015) A new body-fitted immersed volume method for the modeling of ductile fracture at the microscale: analysis of void clusters and stress state effects on coalescence. Eng Fract Mech 147:398–417

    Article  Google Scholar 

  21. Shakoor M, Bouchard P-O, Bernacki M (2017) An adaptive level-set method with enhanced volume conservation for simulations in multiphase domains. Int J Numer Methods Eng 109:555–576

    Article  MathSciNet  Google Scholar 

  22. Digonnet H, Silva L, Coupez T (2007) Cimlib: a fully parallel application for numerical simulations based on components assembly. Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming Processes

  23. Resk H, Delannay L, Bernacki M, Coupez T, Logé R (2009) Adaptive mesh refinement and automatic remeshing in crystal plasticity finite element simulations. Model Simul Mater Sci Eng 17:075012

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like gratefully to thank AUBERT & DUVAL, CEA, TIMET and SAFRAN for funding this research through the SPATIALES project of the DIGIMU consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D . Polychronopoulou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polychronopoulou, D..., Bozzolo, N., Pino Muñoz, D. et al. Introduction to the level-set full field modeling of laths spheroidization phenomenon in α/β titanium alloys. Int J Mater Form 12, 173–183 (2019). https://doi.org/10.1007/s12289-017-1371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-017-1371-6

Keywords

Navigation