Skip to main content

Advertisement

Log in

Quantifying the injury of the human eye components due to tennis ball impact using a computational fluid–structure interaction model

  • Original Article
  • Published:
Sports Engineering Aims and scope Submit manuscript

Abstract

Although it might be believed that the eye only comprised a very small area of the face, its injury due to the ball impacts in different sports seems to be severe enough to entice many researchers to determine the level of injury and then attempt to minimize it. Sports-related eye injuries, especially tennis, pose a substantial and preventable problem to the eye due to the high speed of the tennis ball (69 m/s). This is why many ophthalmologists provide a wide range of information for their patients regarding the risks of eye injuries in tennis to prevent the injury to well over 100,000 eyes each year. However, so far although there are some general information regarding the injury to the human eye components due to the tennis ball impact, the details of the stresses and deformations have not been well determined. Therefore, the goal of this study was to determine the stresses and deformations of the eye components, including cornea, aqueous body, iris, ciliary body, lens, vitreous body, retina, sclera, optic nerve, extra and intraconal fats, and muscles, attributable to the tennis ball impact via a Lagrangian–Eulerian computational coupling model. Magnetic resonance imaging was employed to establish a finite element model of the human eye according to a normal human eye. The numerical results revealed the highest amount of stress in the iris (19.2 MPa), whereas the lowest one was observed in the vitreous body (1.77 Pa). The cornea also experienced the stress of 8.27 MPa which might be high enough to invoke rupture in this delicate material. In addition, the results exhibited a decreasing and increasing of the radius of curvature for the cornea and lens, respectively. Finally, the collision of the tennis ball to the eye triggered the resultant displacement of 0.045 µm in the optic nerve which may imply a non-significant injury to that. The findings of this study may have implications not only for understating the values of stresses and deformations in the human eye components but also for helping the ophthalmologists to have a more precise diagnosis about the injury position in the eye due to the tennis ball impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kovacs M (2006) Applied physiology of tennis performance. Br J Sports Med 40:381–386

    Article  Google Scholar 

  2. Gaw CE, Chounthirath T, Smith GA (2014) Tennis-related injuries treated in United States emergency departments, 1990 to 2011. Clin J Sport Med 24:226–232

    Article  Google Scholar 

  3. Rubin ML (1988) Perspectives in refraction. Surgery 32:357–360

    Google Scholar 

  4. Chen AJ, Chan JJ, Linakis JG, Mello MJ, Greenberg PB (2014) Age and consumer product-related eye injuries in the United States. RI Med J 97:44–48

    Google Scholar 

  5. MacEwen CJ (1987) Sport associated eye injury: a casualty department survey. Br J Ophthalmol 71:701–705

    Article  Google Scholar 

  6. Dekker R, Groothoff J, Van Der Sluis C, Eisma W, Ten Duis H (2009) Long-term disabilities and handicaps following sports injuries: outcome after outpatient treatment. Clin Rehabil 14(6):651–656. doi:10.1191/0269215500cr374oa

    Article  Google Scholar 

  7. Dekker R, Kingma J, Groothoff J, Eisma W, Ten Duis H (2000) Measurement of severity of sports injuries: an epidemiological study. Clin Rehabil 14:651–656

    Article  Google Scholar 

  8. Stam P, Backx F, Hildebrandt V (1996) Sportief bewegen en gezondheidsaspecten, een verkennende studie naar kosten en baten, SEO-Rapport

  9. Jones N (1987) Eye injuries in sport: an increasing problem. Br J Sports Med 21:168–170

    Article  Google Scholar 

  10. Jones NP (1988) One year of severe eye injuries in sport. Eye 2:484–487

    Article  Google Scholar 

  11. Pluim BM, Staal J, Windler G, Jayanthi N (2006) Tennis injuries: occurrence, aetiology, and prevention. Br J Sports Med 40:415–423

    Article  Google Scholar 

  12. Groppel JL (1986) The biomechanics of tennis: an overview. Urbana 51:61801

    Google Scholar 

  13. Taylor R, Zheng C, Jackson R, Doll J, Chen J, Holzbaur K, Besier T, Kuhl E (2009) The phenomenon of twisted growth: humeral torsion in dominant arms of high performance tennis players. Comput Methods Biomech Biomed Eng 12:83–93

    Article  Google Scholar 

  14. Gregory P (1986) Sussex Eye Hospital sports injuries. Br J Ophthalmol 70:748–750

    Article  Google Scholar 

  15. Bespalchuk A, Okada K, Nishida J, Takahashi S, Shimada Y, Itoi E (2004) Stress fracture of the second metacarpal bone. Skelet Radiol 33:537–540

    Article  Google Scholar 

  16. Guha A, Marynissen H (2002) Stress fracture of the hook of the hamate. Br J Sports Med 36:224–225

    Article  Google Scholar 

  17. Lowry AW, McFarland EG, Cosgarea AJ, Sonin A, Farmer KW (2001) Partial rupture of the quadriceps tendon in a tennis player. Clin J Sport Med 11:277–279

    Article  Google Scholar 

  18. Powell J, Kavanagh T, Kennedy D, Marans H, Wright T (1988) Intra-articular knee injuries in racquet sports. Surg Endosc 2:39–43

    Article  Google Scholar 

  19. Hofmann A, Weishaupt P (1999) High performance sports and backache: the value of functional analysis and progressive dynamic strength training of the trunk muscles. Case report of a 15-year-old high performance tennis player. Sportverletzung Sportschaden: Organ der Gesellschaft für Orthopädisch-Traumatologische Sportmedizin 13:M7

  20. Mithöfer K, Giza E (2004) Pseudarthrosis of the first rib in the overhead athlete. Br J Sports Med 38:221–222

    Article  Google Scholar 

  21. Fragniere B, Landry M, Siegrist O (2001) Stress fracture of the ulna in a professional tennis player using a double-handed backhand stroke. Knee Surg Sports Traumatol Arthrosc 9:239–241

    Article  Google Scholar 

  22. Bollen SR, Robinson DG, Crichton KJ, Cross MJ (1993) Stress fractures of the ulna in tennis players using a double-handed backhand stroke. Am J Sports Med 21:751–752

    Article  Google Scholar 

  23. Rettig AC (1983) Stress fracture of the ulna in an adolescent tournament tennis player. Am J Sports Med 11:103–106

    Article  Google Scholar 

  24. Rettig AC, Beltz HF (1985) Stress fracture in the humerus in an adolescent tennis tournament player. Am J Sports Med 13:55–58

    Article  Google Scholar 

  25. Lanese RR, Strauss RH, Leizman DJ, Rotondi A (1990) Injury and disability in matched men’s and women’s intercollegiate sports. Am J Public Health 80:1459–1462

    Article  Google Scholar 

  26. Maffulli N, Baxter-Jones A, Grieve A (2005) Long term sport involvement and sport injury rate in elite young athletes. Arch Dis Child 90:525–527

    Article  Google Scholar 

  27. Grin TR, Nelson LB, Jeffers JB (1987) Eye injuries in childhood. Pediatrics 80:13–17

    Google Scholar 

  28. Kelly S (1987) Serious eye injury in badminton players. Br J Ophthalmol 71:746–747

    Article  Google Scholar 

  29. Nelson LB, Wilson TW, Jeffers JB (1989) Eye injuries in childhood: demography, etiology, and prevention. Pediatrics 84:438–441

    Google Scholar 

  30. Rivara FP (2003) Introduction: the scientific basis for injury control. Epidemiol Rev 25:20–23

    Article  Google Scholar 

  31. Olsen O-E, Myklebust G, Engebretsen L, Holme I, Bahr R (2005) Exercises to prevent lower limb injuries in youth sports: cluster randomised controlled trial. BMJ 330:449

    Article  Google Scholar 

  32. Verhagen E, Van der Beek A, Twisk J, Bouter L, Bahr R, Van Mechelen W (2004) The effect of a proprioceptive balance board training program for the prevention of ankle sprains a prospective controlled trial. Am J Sports Med 32:1385–1393

    Article  Google Scholar 

  33. Weaver AA, Kennedy EA, Duma SM, Stitzel JD (2011) Evaluation of different projectiles in matched experimental eye impact simulations. J Biomech Eng 133:031002

    Article  Google Scholar 

  34. Stitzel JD, Duma SM, Cormier JM, Herring IP (2002) A nonlinear finite element model of the eye with experimental validation for the prediction of globe rupture. Stapp Car Crash J 46:81–102

    Google Scholar 

  35. Al-Sukhun J, Kontio R, Lindqvist C (2006) Orbital stress analysis—part I: simulation of orbital deformation following blunt injury by finite element analysis method. J Oral Maxillofac Surg 64:434–442

    Article  Google Scholar 

  36. Stitzel JD, Hansen GA, Herring IP, Duma SM (2005) Blunt trauma of the aging eye: injury mechanisms and increasing lens stiffness. Arch Ophthalmol 123:789–794

    Article  Google Scholar 

  37. Cirovic S, Bhola RM, Hose DR, Howard IC, Lawford P, Marr JE, Parsons MA (2006) Computer modelling study of the mechanism of optic nerve injury in blunt trauma. Br J Ophthalmol 90:778–783

    Article  Google Scholar 

  38. Mousavi SJ, Nassiri N, Masoumi N, Nassiri N, Majdi-N M, Farzaneh S, Djalilian AR, Peyman GA (2012) Finite element analysis of blunt foreign body impact on the cornea after PRK and LASIK. J Refract Surg 28:59–64

    Article  Google Scholar 

  39. Hans SA, Bawab SY, Woodhouse ML (2009) A finite element infant eye model to investigate retinal forces in shaken baby syndrome. Graefes Arch Clin Exp Ophthalmol 247:561–571

    Article  Google Scholar 

  40. Rangarajan N, Kamalakkannan SB, Hasija V, Shams T, Jenny C, Serbanescu I, Ho J, Rusinek M, Levin AV (2009) Finite element model of ocular injury in abusive head trauma. J AAPOS 13:364–369

    Article  Google Scholar 

  41. Rossi T, Boccassini B, Esposito L, Iossa M, Ruggiero A, Tamburrelli C, Bonora N (2011) The pathogenesis of retinal damage in blunt eye trauma: finite element modeling. Ophthalmol Vis Sci 52:3994–4002

    Article  Google Scholar 

  42. Liu X, Wang L, Wang C, Sun G, Liu S, Fan Y (2013) Mechanism of traumatic retinal detachment in blunt impact: a finite element study. J Biomech 46:1321–1327

    Article  Google Scholar 

  43. Karimi A, Navidbakhsh M, Razaghi R (2014) Dynamic simulation and finite element analysis of the human mandible injury protected by polyvinyl alcohol sponge. Mater Sci Eng C 42:608–614

    Article  Google Scholar 

  44. Karimi A, Razaghi R, Navidbakhsh M, Sera T, Kudo S (2015) Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model. Injury (in press)

  45. Liang J, Grimm B, Goelz S, Bille JF (1994) Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. JOSA A 11:1949–1957

    Article  Google Scholar 

  46. Lee B, Litt M, Buchsbaum G (1991) Rheology of the vitreous body. Part I: viscoelasticity of human vitreous. Biorheology 29:521–533

    Google Scholar 

  47. Schoemaker I, Hoefnagel PP, Mastenbroek TJ, Kolff CF, Schutte S, van der Helm FC, Picken SJ, Gerritsen AF, Wielopolski PA, Spekreijse H (2006) Elasticity, viscosity, and deformation of orbital fat. Invest Ophthalmol Vis Sci 47:4819–4826

    Article  Google Scholar 

  48. Uchio E, Ohno S, Kudoh J, Aoki K, Kisielewicz LT (1999) Simulation model of an eyeball based on finite element analysis on a supercomputer. Br J Ophthalmol 83:1106–1111

    Article  Google Scholar 

  49. Power ED, Duma SM, Stitzel JD, Herring IP, West RL, Bass CR, Crowley JS, Brozoski FT (2002) Computer modeling of airbag-induced ocular injury in pilots wearing night vision goggles. Aviat Space Environ Med 73:1000–1006

    Google Scholar 

  50. Zhang K, Qian X, Mei X, Liu Z (2014) An inverse method to determine the mechanical properties of the iris in vivo. Biomed Eng Online 13:66

    Article  Google Scholar 

  51. Liu X, Wang L, Wang C, Fan J, Liu S, Fan Y (2015) Prediction of globe rupture caused by primary blast: a finite element analysis. Comput Methods Biomech Biomed Eng 18:1024–1029

    Article  Google Scholar 

  52. L.-D.K.U.s (2007) Manual, I. Volume, version 971. Livermore Software Technology Corporation, 7374

  53. Karimi A, Navidbakhsh M, Razaghi R, Haghpanahi M (2014) A computational fluid-structure interaction model for plaque vulnerability assessment in atherosclerotic human coronary arteries. J Appl Phys 115:144702–144711

    Article  Google Scholar 

  54. Karimi A, Navidbakhsh M, Razaghi R (2014) An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge. Mater Sci Eng C 39:253–258

    Article  Google Scholar 

  55. Razaghi R, Karimi A, Rahmani S, Navidbakhsh M (2015) A computational fluid–structure interaction model of the blood flow in the healthy and varicose saphenous vein. Vascular 1708538115594095

  56. Karimi A, Navidbakhsh M, Razaghi R (2014) A finite element study of balloon expandable stent for plaque and arterial wall vulnerability assessment. J Appl Phys 116:044701–044710

    Article  Google Scholar 

  57. Karimi A, Navidbakhsh M, Razaghi R (2014) Plaque and arterial vulnerability investigation in a three-layer atherosclerotic human coronary artery using computational fluid–structure interaction method. J Appl Phys 116:064701–064710

  58. Négrel A-D, Thylefors B (1998) The global impact of eye injuries. Neuro-Ophthalmology 5:143–169

    Google Scholar 

  59. Buhr ED, Yue WW, Ren X, Jiang Z, Liao H-WR, Mei X, Vemaraju S, Nguyen M-T, Reed RR, Lang RA (2015) Neuropsin (OPN5)-mediated photoentrainment of local circadian oscillators in mammalian retina and cornea. Proc Natl Acad Sci USA 201516259

  60. Bradbury M, Cole D (1980) The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour. J Physiol 299:353–365

    Article  Google Scholar 

  61. Pieh S, Marvan P, Lackner B, Hanselmayer G, Schmidinger G, Leitgeb R, Sticker M, Hitzenberger CK, Fercher AF, Skorpik C (2002) Quantitative performance of bifocal and multifocal intraocular lenses in a model eye: point spread function in multifocal intraocular lenses. Arch Ophthalmol 120:23–28

    Article  Google Scholar 

  62. Ware C (2012) Information visualization: perception for design. Elsevier, Amsterdam

  63. Fisher R (1985) The ciliary body in accommodation. Trans Ophthalmol Soc UK 105:208–219

    Google Scholar 

  64. Findl O, Kiss B, Petternel V, Menapace R, Georgopoulos M, Rainer G, Drexler W (2003) Intraocular lens movement caused by ciliary muscle contraction. J Cataract Refract Surg 29:669–676

    Article  Google Scholar 

  65. Barrell G, Cooper P, Elkington A, Macfadyen J, Powell R, Tormey P (1981) Squash ball to eye ball: the likelihood of squash players incurring an eye injury. BMJ 283:893–895

    Article  Google Scholar 

  66. Jones MNP (1989) Eye injury in sport. Sports Med 7:163–181

    Article  Google Scholar 

  67. Stitzel JD, Duma SM, Cormier JM, Herring IP (2002) A nonlinear finite element model of the eye with experimental validation for the prediction of globe rupture. SAE Conf Proc P SAE 1999:81–102

    Google Scholar 

  68. Heys JJ, Barocas VH, Taravella MJ (2001) Modeling passive mechanical interaction between aqueous humor and iris. J Biomech Eng 123:540–547

    Article  Google Scholar 

  69. Karimi A, Kudo S, Razaghi R, Navidbakhsh M (2015) A combination of experimental and numerical analyses to measure the compressive mechanical properties of tennis ball. Biomed Eng Appl Basis Commun 27:1550039

    Article  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Karimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, A., Razaghi, R., Navidbakhsh, M. et al. Quantifying the injury of the human eye components due to tennis ball impact using a computational fluid–structure interaction model. Sports Eng 19, 105–115 (2016). https://doi.org/10.1007/s12283-015-0192-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12283-015-0192-4

Keywords

Navigation