Skip to main content

Advertisement

Log in

Association of metastatic pattern in breast cancer with tumor and patient-specific factors: a nationwide autopsy study using artificial intelligence

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

Metastatic spread is characterized by considerable heterogeneity in most cancers. With increasing treatment options for patients with metastatic disease, there is a need for insight into metastatic patterns of spread in breast cancer patients using large-scale studies.

Methods

Records of 2622 metastatic breast cancer patients who underwent autopsy (1974–2010) were retrieved from the nationwide Dutch pathology databank (PALGA). Natural language processing (NLP) and manual information extraction (IE) were applied to identify the tumors, patient characteristics, and locations of metastases.

Results

The accuracy (0.90) and recall (0.94) of the NLP model outperformed manual IE (on 132 randomly selected patients). Adenocarcinoma no special type more frequently metastasizes to the lung (55.7%) and liver (51.8%), whereas, invasive lobular carcinoma mostly spread to the bone (54.4%) and liver (43.8%), respectively. Patients with tumor grade III had a higher chance of developing bone metastases (61.6%). In a subgroup of patients, we found that ER+/HER2+ patients were more likely to metastasize to the liver and bone, compared to ER−/HER2+ patients.

Conclusion

This is the first large-scale study that demonstrates that artificial intelligence methods are efficient for IE from Dutch databanks. Different histological subtypes show different frequencies and combinations of metastatic sites which may reflect the underlying biology of metastatic breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data underlying this article were provided by PALGA and NCR by permission. Data will be shared on reasonable request to the corresponding author with permission from PALGA and NCR.

References

  1. Sørlie T. Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer. 2004;40(18):2667–75.

    Article  PubMed  Google Scholar 

  2. Chia SK, Speers CH, D’yachkova Y, Kang A, Malfair-Taylor S, Barnett J, Coldman A, Gelmon KA, O’Reilly SE, Olivotto IA. The impact of new chemotherapeutic and hormone agents on survival in a population-based cohort of women with metastatic breast cancer. Cancer. 2007;110(5):973–9.

    Article  PubMed  Google Scholar 

  3. Arciero CA, Guo Y, Jiang R, Behera M, O’Regan R, Peng L, Li X. ER+/HER2+ breast cancer has different metastatic patterns and better survival than ER−/HER2+ breast cancer. Clin Breast Cancer. 2019;19(4):236–45.

    Article  PubMed  Google Scholar 

  4. Jain S, Fisher C, Smith P, Millis RR, Rubens RD. Patterns of metastatic breast cancer in relation to histological type. Eur J Cancer. 1993;29(15):2155–7.

    Article  Google Scholar 

  5. Cummings MC, Simpson PT, Reid LE, Jayanthan J, Skerman J, Song S, McCart Reed AE, Kutasovic JR, Morey AL, Marquart L, O’Rourke P. Metastatic progression of breast cancer: insights from 50 years of autopsies. J Pathol. 2014;232(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  6. Hugen N, Van de Velde CJ, De Wilt JH, Nagtegaal ID. Metastatic pattern in colorectal cancer is strongly influenced by histological subtype. Ann Oncol. 2014;25(3):651–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Verstegen MH, Harker M, van de Water C, van Dieren J, Hugen N, Nagtegaal ID, Rosman C, Van der Post RS. Metastatic pattern in esophageal and gastric cancer: Influenced by site and histology. World J Gastroenterol. 2020;26(39):6037.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hugen N, Sloot YJ, Netea-Maier RT, van de Water C, Smit JW, Nagtegaal ID, Van Engen-van Grunsven IC. Divergent metastatic patterns between subtypes of thyroid carcinoma results from the nationwide Dutch pathology registry. J Clin Endocrinol Metab. 2020;105(3):e299–306.

    Article  PubMed  Google Scholar 

  9. Tang R, Ouyang L, Li C, He Y, Griffin M, Taghian A, Smith B, Yala A, Barzilay R, Hughes K. Machine learning to parse breast pathology reports in Chinese. Breast Cancer Res Treat. 2018;169:243–50.

    Article  PubMed  Google Scholar 

  10. Forsyth AW, Barzilay R, Hughes KS, Lui D, Lorenz KA, Enzinger A, Tulsky JA, Lindvall C. Machine learning methods to extract documentation of breast cancer symptoms from electronic health records. J Pain Symptom Manag. 2018;55(6):1492–9.

    Article  Google Scholar 

  11. Zeng Z, Espino S, Roy A, Li X, Khan SA, Clare SE, Jiang X, Neapolitan R, Luo Y. Using natural language processing and machine learning to identify breast cancer local recurrence. BMC Bioinform. 2018;19(17):65–74.

    Google Scholar 

  12. Van Noord G, Bouma G, Van Eynde F, De Kok D, Van der Linde J, Schuurman I, Sang ET, Vandeghinste V. Large scale syntactic annotation of written Dutch: Lassy. Essential speech and language technology for Dutch: results by the STEVIN programme. 2013;147–64.

  13. Casparie M, Tiebosch AT, Burger G, Blauwgeers H, Van de Pol A, Van Krieken JH, Meijer GA. Pathology databanking and biobanking in The Netherlands, a central role for PALGA, the nationwide histopathology and cytopathology data network and archive. Anal Cell Pathol. 2007;29(1):19–24.

    Article  CAS  Google Scholar 

  14. Tan PH, Ellis I, Allison K, Brogi E, Fox SB, Lakhani S, Lazar AJ, Morris EA, Sahin A, Salgado R, Sapino A. The 2019 WHO classification of tumours of the breast. Histopathology. 2020;77:181–5.

    Article  PubMed  Google Scholar 

  15. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR, Winchester DP. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67(2):93–9.

    Article  PubMed  Google Scholar 

  16. Medelyan O, Milne D, Legg C, Witten IH. Mining meaning from Wikipedia. Int J Hum Comput Stud. 2009;67(9):716–54.

    Article  Google Scholar 

  17. Bouma G, van Noord G. Increasing return on annotation investment: the automatic construction of a Universal dependency treebank for Dutch. In: Proceedings of the universal dependencies workshop, Gothenburg. 2017. http://aclweb.org/anthology/W17-0403.

  18. van Noord G, et al. Large scale syntactic annotation of written Dutch: Lassy. In: Spyns P, Odijk J, editors., et al., Essential speech and language technology for Dutch. Theory and applications of natural language processing. Berlin: Springer; 2013. https://doi.org/10.1007/978-3-642-30910-6_9.

    Chapter  Google Scholar 

  19. College of American Pathologists, Gantner GE, Côté RA, Beckett RS. Systematized nomenclature of medicine: coding manual. The College.1979.

  20. Lee YT. Breast carcinoma: pattern of metastasis at autopsy. J Surg Oncol. 1983;23(3):175–80.

    Article  CAS  PubMed  Google Scholar 

  21. Budczies J, von Winterfeld M, Klauschen F, Bockmayr M, Lennerz JK, Denkert C, Wolf T, Warth A, Dietel M, Anagnostopoulos I, Weichert W. The landscape of metastatic progression patterns across major human cancers. Oncotarget. 2015;6(1):570.

    Article  PubMed  Google Scholar 

  22. Perkins CI, Hotes J, Kohler BA, Howe HL. Association between breast cancer laterality and tumor location, United States, 1994–1998. Cancer Causes Control. 2004;15:637–45.

    Article  PubMed  Google Scholar 

  23. Cheng SA, Liang LZ, Liang QL, Huang ZY, Peng XX, Hong XC, Luo XB, Yuan GL, Zhang HJ, Jiang L. Breast cancer laterality and molecular subtype likely share a common risk factor. Cancer Manag Res. 2018;29:6549–54.

    Article  Google Scholar 

  24. Abdou Y, Gupta M, Asaoka M, Attwood K, Mateusz O, Gandhi S, Takabe K. Left sided breast cancer is associated with aggressive biology and worse outcomes than right sided breast cancer. Sci Rep. 2022;12(1):13377.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Snoek JAA, Nagtegaal ID, Siesling S, van den Broek E, van Slooten HJ, Hugen N. The impact of standardized structured reporting of pathology reports for breast cancer care. Breast. 2022;66:178–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Knijn N, van Erning FN, Overbeek LI, Punt CJ, Lemmens VE, Hugen N, Nagtegaal ID. Limited effect of lymph node status on the metastatic pattern in colorectal cancer. Oncotarget. 2016;7(22):31699.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Banerjee I, Bozkurt S, Caswell-Jin JL, Kurian AW, Rubin DL. Natural language processing approaches to detect the timeline of metastatic recurrence of breast cancer. JCO Clin Cancer Inform. 2019;3:1–2.

    Article  PubMed  Google Scholar 

  28. De Bruijn LM, Hasman A, Arends JW. Automatic coding of diagnostic reports. Methods Inf Med. 1998;37(03):260–5.

    Article  PubMed  Google Scholar 

  29. Stanfill MH, Williams M, Fenton SH, Jenders RA, Hersh WR. A systematic literature review of automated clinical coding and classification systems. J Am Med Inform Assoc. 2010;17(6):646–51.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Burger G, Abu-Hanna A, de Keizer N, Cornet R. Natural language processing in pathology: a scoping review. J Clin Pathol. 2016;69(11):949–55.

    Article  Google Scholar 

  31. Nguyen A, Moore D, McCowan I, Courage MJ. Multi-class classification of cancer stages from free-text histology reports using support vector machines. In: 2007 29th Annual international conference of the IEEE Engineering in Medicine and Biology Society. IEEE, (2007);5140–3.

  32. Demner-Fushman D, Chapman WW, McDonald CJ. What can natural language processing do for clinical decision support? J Biomed Inform. 2009;42(5):760–72.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Laparra E, Mascio A, Velupillai S, Miller T. A review of recent work in transfer learning and domain adaptation for natural language processing of electronic health records. Yearb Med Inform. 2021;30(01):239–44.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MO, NH and IN; Data curation, FK, AS, QV, MO and IN; Funding acquisition, MO and IN; Investigation, FK, AS, MO, NH and IN; Methodology, FK, AS, MO and IN; Project administration, FK, MO and IN; Resources, AS, QV and IN; Supervision, MO and IN; Visualization, FK and IN; Writing—original draft, FK; Writing—review and editing, FK, AS, QV, MO, NH, and IN.

Corresponding authors

Correspondence to Fatemeh Kazemzadeh or Iris D. Nagtegaal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Institutional review board statement

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 620 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemzadeh, F., Snoek, J.A.A., Voorham, Q.J. et al. Association of metastatic pattern in breast cancer with tumor and patient-specific factors: a nationwide autopsy study using artificial intelligence. Breast Cancer 31, 263–271 (2024). https://doi.org/10.1007/s12282-023-01534-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-023-01534-6

Keywords

Navigation