Skip to main content

Advertisement

Log in

Establishment of a standardized gene-expression analysis system using formalin-fixed, paraffin-embedded, breast cancer specimens

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

It has recently being emphasized that gene-expression profiles are important clinical decision-making tools, and as such must be standardized across hospital laboratories in the same way as pathological investigations. In this study our objective was to independently establish a standardized gene-expression assay system using routinely processed, formalin-fixed, paraffin-embedded (FFPE) tissues.

Methods

To verify gene expression by quantitative real-time polymerase chain reaction, the most stably expressed reference genes were explored using 30 matched FFPE and fresh frozen (FF) tissues. FFPE specimens from 290 female breast cancer patients were used for further RNA extraction; ESR1 and PGR were measured using 203 matched FFPE and FF specimens and normalized to these reference genes.

Results

RNA extracted from FFPE specimens was highly degraded, but almost the same selection of genes was identified—TAF, PUM1, and ACTB, and, for FFPE specimens only, FKBP15. Eventually 88.6% of all the FFPE samples were identified as quantitatively and qualitatively adequate for downstream analysis. The results revealed good correlation and excellent concordance with ERα and PgR protein expression evaluated by immunohistochemistry. Moreover, the distribution of ESR1 and PGR gene expression values was quite reasonable, reflecting differences between the transcriptional mechanisms of the respective genes.

Conclusions

We successfully confirmed that our gene-expression analysis system provides good quality control for larger scale assays; it may therefore be suitable for development, in the near future, of a multiple gene assay as a routine clinical judgment tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  PubMed  CAS  Google Scholar 

  2. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.

    Article  Google Scholar 

  3. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100(14):8418–23.

    Article  PubMed  CAS  Google Scholar 

  4. Perreard L, Fan C, Quackenbush JF, Mullins M, Gauthier NP, Nelson E, et al. Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast Cancer Res. 2006;8(2):R23.

    Article  PubMed  Google Scholar 

  5. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7.

    Article  PubMed  Google Scholar 

  6. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.

    Article  PubMed  CAS  Google Scholar 

  7. Toussaint J, Sieuwerts AM, Haibe-Kains B, Desmedt C, Rouas G, Harris AL, et al. Improvement of the clinical applicability of the Genomic Grade Index through a qRT-PCR test performed on frozen and formalin-fixed paraffin-embedded tissues. BMC Genomics. 2009;10:424.

    Article  PubMed  Google Scholar 

  8. Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, Vickery T, et al. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res. 2010;16(21):5222–32.

    Article  PubMed  CAS  Google Scholar 

  9. Mittempergher L, de Ronde JJ, Nieuwland M, Kerkhoven RM, Simon I, Rutgers EJ, et al. Gene expression profiles from formalin fixed paraffin-embedded breast cancer tissue are largely comparable to fresh frozen matched tissue. PLoS One. 2011;6(2):17163.

    Article  Google Scholar 

  10. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ. Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22(8):1736–47.

    Article  PubMed  CAS  Google Scholar 

  11. von Ahlfen S, Missel A, Bendrat K, Schlumpberger M. Determinants of RNA quality from FFPE samples. PLoS One. 2007;2(12):1261.

    Article  Google Scholar 

  12. Cronin M, Pho M, Dutta D, Stephans JC, Shak S, Kiefer MC, et al. Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol. 2004;164(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  13. Pentheroudakis G, Kalogeras KT, Wirtz RM, Grimani I, Zografos G, Gogas H, et al. Gene expression of estrogen receptor, progesterone receptor and microtubule-associated protein Tau in high-risk early breast cancer: a quest for molecular predictors of treatment benefit in the context of a Hellenic Cooperative Oncology Group trial. Breast Cancer Res Treat. 2009;116(1):131–43.

    Article  PubMed  CAS  Google Scholar 

  14. Esteva FJ, Sahin AA, Cristofanilli M, Coombes K, Lee SJ, Baker J, et al. Prognostic role of a multigene reverse transcriptase-PCR assay in patients with node-negative breast cancer not receiving adjuvant systemic therapy. Clin Cancer Res. 2005;11(9):3315–9.

    Article  PubMed  CAS  Google Scholar 

  15. Chang JC, Makris A, Gutierrez MC, Hilsenbeck SG, Hackett JR, Jeong J, et al. Gene expression patterns in formalin-fixed, paraffin-embedded core biopsies predict docetaxel chemosensitivity in breast cancer patients. Breast Cancer Res Treat. 2008;108(2):233–40.

    Article  PubMed  CAS  Google Scholar 

  16. Perez-Novo CA, Claeys C, Speleman F, Van Cauwenberge P, Bachert C, Vandesompele J. Impact of RNA quality on reference gene expression stability. Biotechniques. 2005;39(1):52, 54, 56.

    Google Scholar 

  17. de Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T, et al. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest. 2005;85(1):154–9.

    PubMed  Google Scholar 

  18. Drury S, Anderson H, Dowsett M. Selection of REFERENCE genes for normalization of qRT-PCR data derived from FFPE breast tumors. Diagn Mol Pathol. 2009;18(2):103–7.

    Article  PubMed  CAS  Google Scholar 

  19. Sanchez-Navarro I, Gamez-Pozo A, Gonzalez-Baron M, Pinto-Marin A, Hardisson D, Lopez R, et al. Comparison of gene-expression profiling by reverse transcription quantitative PCR between fresh frozen and formalin-fixed, paraffin-embedded breast cancer tissues. Biotechniques. 2010;48(5):389–97.

    Article  PubMed  CAS  Google Scholar 

  20. Muller BM, Kronenwett R, Hennig G, Euting H, Weber K, Bohmann K, et al. Quantitative determination of estrogen receptor, progesterone receptor, and HER2 mRNA in formalin-fixed paraffin-embedded tissue—a new option for predictive biomarker assessment in breast cancer. Diagn Mol Pathol. 2011;20(1):1–10.

    Article  PubMed  Google Scholar 

  21. Antonov J, Goldstein DR, Oberli A, Baltzer A, Pirotta M, Fleischmann A, et al. Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization. Lab Invest. 2005;85(8):1040–50.

    Article  PubMed  CAS  Google Scholar 

  22. Mullins M, Perreard L, Quackenbush JF, Gauthier N, Bayer S, Ellis M, et al. Agreement in breast cancer classification between microarray and quantitative reverse transcription PCR from fresh-frozen and formalin-fixed, paraffin-embedded tissues. Clin Chem. 2007;53(7):1273–9.

    Article  PubMed  CAS  Google Scholar 

  23. Elloumi F, Hu Z, Li Y, Parker JS, Gulley ML, Amos KD, et al. Systematic bias in genomic classification due to contaminating non-neoplastic tissue in breast tumor samples. BMC Med Genomics. 2011;4(1):54.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Y. Azakami for excellent technical support and A. Okabe, for excellent clinical data management.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutsuko Ibusuki.

About this article

Cite this article

Ibusuki, M., Fu, P., Yamamoto, S. et al. Establishment of a standardized gene-expression analysis system using formalin-fixed, paraffin-embedded, breast cancer specimens. Breast Cancer 20, 159–166 (2013). https://doi.org/10.1007/s12282-011-0318-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-011-0318-x

Keywords

Navigation