Skip to main content

Advertisement

Log in

Updates in the Treatment of Breakthrough Mold Infections

  • Pharmacology and Pharmacodynamics of Antifungal Agents (J Amsden, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Patients on antifungal therapy who develop breakthrough mold infections pose significant treatment challenges for clinicians. Treatment of these infections demands a multimodal approach, including a thorough patient assessment, immune restoration, and evaluation for nonadherence and drug–drug interactions. However, limited clinical trial data are available to guide therapeutic decision-making.

Recent Findings

Organisms associated with breakthrough mold infection have historically included Aspergillus species and the Mucorales; however, rare and resistant molds are increasing in prevalence. Treatment failure and mortality rates remain high with breakthrough infection, irrespective of the selected treatment. Therapeutic drug monitoring, dose optimization, and combination antifungal therapy have been increasingly used to treat refractory cases.

Summary

Switch therapy and combination antifungal therapy represent the major treatment strategies for breakthrough mold infection. Herein, preclinical and clinical data are reviewed supporting the merits of each approach. Additionally, recommendations for therapeutic drug monitoring are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jung J, Park YS, Sung H, Song JS, Lee SO, Choi SH, et al. Using immunohistochemistry to assess the accuracy of histomorphologic diagnosis of aspergillosis and mucormycosis. Clin Infect Dis. 2015;61:1664–70.

    CAS  PubMed  Google Scholar 

  2. Cenci E, Perito S, Enssle KH, Mosci P, Latgé JP, Romani L, et al. Th1 and Th2 cytokines in mice with invasive aspergillosis. Infect Immun. 1997;65:564–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Roden MM, Zaoutis TE, Buchanan WL, et al. Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis. 2005;41:634–53.

    PubMed  Google Scholar 

  4. Trifilio S, Singhal S, Williams S, et al. Breakthrough fungal infections after allogeneic hematopoietic stem cell transplantation in patients on prophylactic voriconazole. Bone Marrow Transplant. 2007;40:451–6.

    CAS  PubMed  Google Scholar 

  5. Steinmann J, Hamprecht A, Vehreschild MJ, Cornely OA, Buchheidt D, Spiess B, et al. Emergence of azole-resistant invasive aspergillosis in HSCT recipients in Germany. J Antimicrob Chemother. 2015;70:1522–6.

    CAS  PubMed  Google Scholar 

  6. Cornely OA, Maertens J, Winston DJ, Perfect J, Ullmann AJ, Walsh TJ, et al. Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N Engl J Med. 2007;356:348–59.

    CAS  PubMed  Google Scholar 

  7. Ullmann AJ, Lipton JH, Vesole DH, Chandrasekar P, Langston A, Tarantolo SR, et al. Posaconazole or fluconazole for prophylaxis in severe graft-versus-host disease. N Engl J Med. 2007;356:335–47.

    CAS  PubMed  Google Scholar 

  8. Auberger J, Lass-Flörl C, Aigner M, Clausen J, Gastl G, Nachbaur D. Invasive fungal breakthrough infections, fungal colonization and emergence of resistant strains in high-risk patients receiving antifungal prophylaxis with posaconazole: real-life data from a single-centre institutional retrospective observational study. J Antimicrob Chemother. 2012;67:2268–73.

    CAS  PubMed  Google Scholar 

  9. •• Lamoth F, Chung SJ, Damonti L, et al. Changing epidemiology of invasive mold infections in patients receiving azole prophylaxis. Clin Infect Dis. 2017;64:1619–21 This retrospective analysis illustrates a shift in the epidemiology of breakthrough mold infections toward non-Aspergillusspecies for patients who previously received broad-spectrum azole antifungal prophylaxis.

    PubMed  Google Scholar 

  10. Lerolle N, Raffoux E, Socie G, et al. Breakthrough invasive fungal disease in patients receiving posaconazole primary prophylaxis: a 4-year study. Clin Microbiol Infect. 2014;20:O952–9.

    CAS  PubMed  Google Scholar 

  11. Pagano L, Caira M, Candoni A, Aversa F, Castagnola C, Caramatti C, et al. Evaluation of the practice of antifungal prophylaxis use in patients with newly diagnosed acute myeloid leukemia: results from the SEIFEM 2010-B registry. Clin Infect Dis. 2012;55:1515–21.

    CAS  PubMed  Google Scholar 

  12. Maertens JA, Raad II, Marr KA, Patterson TF, Kontoyiannis DP, Cornely OA, et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): a phase 3, randomised-controlled, non-inferiority trial. Lancet. 2016;387:760–9.

    CAS  PubMed  Google Scholar 

  13. • Marty FM, Ostrosky-Zeichner L, Cornely OA, et al. Isavuconazole treatment for mucormycosis: a single-arm open-label trial and case-control analysis. Lancet Infect Dis. 2016;16:828–37 Clinical trial resulting in the FDA’s approval of isavuconazole for the treatment of mucormycosis.

    CAS  PubMed  Google Scholar 

  14. Rausch CR, DiPippo AJ, Bose P, et al. Breakthrough fungal infections in leukemia patients receiving isavuconazole. Clin Infect Dis. 2018;67:1610–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kullberg BJ, Viscoli C, Pappas PG, et al. Isavuconazole versus caspofungin in the treatment of candidemia and other invasive Candida infections: the ACTIVE trial. Clin Infect Dis. 2019;68:1981–9.

    CAS  PubMed  Google Scholar 

  16. Fontana L, Perlin DS, Zhao Y, et al. Isavuconazole prophylaxis in patients with hematologic malignancies and hematopoietic-cell transplant recipients. Clin Infect Dis. 2019. https://doi.org/10.1093/cid/ciz282.

  17. Fung M, Schwartz BS, Doernberg SB, et al. Breakthrough invasive fungal infections on isavuconazole prophylaxis and treatment: what is happening in the real-world setting? Clin Infect Dis. 2018;67:1142–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Marty FM, Cosimi LA, Baden LR. Breakthrough zygomycosis after voriconazole treatment in recipients of hematopoietic stem-cell transplants. N Engl J Med. 2004;350:950–2.

    CAS  PubMed  Google Scholar 

  19. Kim SB, Cho SY, Lee DG, Choi JK, Lee HJ, Kim SH, et al. Breakthrough invasive fungal diseases during voriconazole treatment for aspergillosis: a 5-year retrospective cohort study. Med Mycol. 2017;55:237–45.

    CAS  PubMed  Google Scholar 

  20. Imhof A, Balajee SA, Fredricks DN, Englund JA, Marr KA. Breakthrough fungal infections in stem cell transplant recipients receiving voriconazole. Clin Infect Dis. 2004;39:743–6.

    PubMed  Google Scholar 

  21. Pang KA, Godet C, Fekkar A, et al. Breakthrough invasive mould infections in patients treated with caspofungin. J Inf Secur. 2012;64:424–9.

    Google Scholar 

  22. Neofytos D, Huang YT, Cheng K, et al. Safety and efficacy of intermittent intravenous administration of high-dose micafungin. Clin Infect Dis. 2015;61:S652–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Viscoli C, Herbrecht R, Akan H, Baila L, Sonet A, Gallamini A, et al. An EORTC phase II study of caspofungin as first-line therapy of invasive aspergillosis in haematological patients. J Antimicrob Chemother. 2009;64:1274–81.

    CAS  PubMed  Google Scholar 

  24. Baker AW, Maziarz EK, Arnold CJ, Johnson MD, Workman AD, Reynolds JM, et al. Invasive fungal infection after lung transplantation: epidemiology in the setting of antifungal prophylaxis. Clin Infect Dis. 2020;70:30–9.

    PubMed  Google Scholar 

  25. Cuenca-Estrella M, Gomez-Lopez A, Mellado E, Monzon A, Buitrago MJ, Rodriguez-Tudela JL. Activity profile in vitro of micafungin against Spanish clinical isolates of common and emerging species of yeasts and molds. Antimicrob Agents Chemother. 2009;53:2192–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Louis-Auguste JR, Micallef C, Ambrose T, Upponi S, Butler AJ, Massey D, et al. Fatal breakthrough mucormycosis in a multivisceral transplant patient receiving micafungin: case report and literature review. IDCases. 2018;12:76–9.

    PubMed  PubMed Central  Google Scholar 

  27. Cahuayme-Zuniga L, Lewis RE, Mulanovich VE, Kontoyiannis DP. Weekly liposomal amphotericin B as secondary prophylaxis for invasive fungal infections in patients with hematological malignancies. Med Mycol. 2012;50:543–8.

    CAS  PubMed  Google Scholar 

  28. Perfect JR, Klotman ME, Gilbert CC, Crawford DD, Rosner GL, Wright KA, et al. Prophylactic intravenous amphotericin B in neutropenic autologous bone marrow transplant recipients. J Infect Dis. 1992;165:891–7.

    CAS  PubMed  Google Scholar 

  29. •• Sharma C, Chowdhary A. Molecular bases of antifungal resistance in filamentous fungi. Int J Antimicrob Agents. 2017;50:607–16 A thorough review ofAspergillusspp.,Fusariumspp., andScedosporiumspp. antifungal resistance mechanisms.

    CAS  PubMed  Google Scholar 

  30. Walsh TJ, Winston DJ, Lazarus HM, et al. Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever. N Engl J Med. 2002;346:225–34.

    CAS  PubMed  Google Scholar 

  31. Lionakis MS, Lewis RE, Kontoyiannis DP. Breakthrough invasive mold infections in the hematology patient: current concepts and future directions. Clin Infect Dis. 2018;67:1621–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Abzug MJ, Walsh TJ. Interferon-gamma and colony-stimulating factors as adjuvant therapy for refractory fungal infections in children. Pediatr Infect Dis J. 2004;23:769–73.

    PubMed  Google Scholar 

  33. Garcia-Diaz JB, Palau L, Pankey GA. Resolution of rhinocerebral zygomycosis associated with adjuvant administration of granulocyte-macrophage colony-stimulating factor. Clin Infect Dis. 2001;32:e145–50.

    CAS  PubMed  Google Scholar 

  34. Yuda J, Kato K, Kikushige Y, Ohkusu K, Kiyosuke M, Sakamoto K, et al. Successful treatment of invasive zygomycosis based on a prompt diagnosis using molecular methods in a patient with acute myelogenous leukemia. Intern Med. 2014;53:1087–91.

    PubMed  Google Scholar 

  35. Hubel K, Dale DC, Engert A, et al. Current status of granulocyte (neutrophil) transfusion therapy for infectious diseases. J Infect Dis. 2001;183:321–8.

    CAS  PubMed  Google Scholar 

  36. Park WB, Kim NH, Kim KH, Lee SH, Nam WS, Yoon SH, et al. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis. 2012;55:1080–7.

    CAS  PubMed  Google Scholar 

  37. • Jin H, Wang T, Falcione BA, et al. Trough concentration of voriconazole and its relationship with efficacy and safety: a systematic review and meta-analysis. J Antimicrob Chemother. 2016;71:1772–85 A large meta-analysis involving over 1100 patients evaluating the relationship of voriconazole trough concentrations and clinical outcomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother. 2014;69:1162–76.

    CAS  Google Scholar 

  39. Troke PF, Hockey HP, Hope WW. Observational study of the clinical efficacy of voriconazole and its relationship to plasma concentrations in patients. Antimicrob Agents Chemother. 2011;55:4782–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46:201–11.

    CAS  PubMed  Google Scholar 

  41. Wang T, Chen S, Sun J, et al. Identification of factors influencing the pharmacokinetics of voriconazole and the optimization of dosage regimens based on Monte Carlo simulation in patients with invasive fungal infections. J Antimicrob Chemother. 2014;69:463–70.

    CAS  PubMed  Google Scholar 

  42. Abidi MZ, D’Souza A, Kuppalli K, Ledeboer N, Hari P. CYP2C19*17 genetic polymorphism--an uncommon cause of voriconazole treatment failure. Diagn Microbiol Infect Dis. 2015;83:46–8.

    CAS  PubMed  Google Scholar 

  43. Pascual A, Csajka C, Buclin T, et al. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin Infect Dis. 2012;55:381–90.

    CAS  PubMed  Google Scholar 

  44. Han K, Capitano B, Bies R, Potoski BA, Husain S, Gilbert S, et al. Bioavailability and population pharmacokinetics of voriconazole in lung transplant recipients. Antimicrob Agents Chemother. 2010;54:4424–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Koselke E, Kraft S, Smith J, Nagel J. Evaluation of the effect of obesity on voriconazole serum concentrations. J Antimicrob Chemother. 2012;67:2957–62.

    CAS  PubMed  Google Scholar 

  46. Dekkers BGJ, Bakker M, van der Elst KCM, Sturkenboom MGG, Veringa A, Span LFR, et al. Therapeutic drug monitoring of posaconazole: an update. Curr Fungal Infect Rep. 2016;10:51–61.

    PubMed  PubMed Central  Google Scholar 

  47. Lenczuk D, Zinke-Cerwenka W, Greinix H, et al. Antifungal prophylaxis with posaconazole delayed-release tablet and oral suspension in a real-life setting: plasma levels, efficacy, and tolerability. Antimicrob Agents Chemother. 2018;62:e02655–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Courtney R, Pai S, Laughlin M, Lim J, Batra V. Pharmacokinetics, safety, and tolerability of oral posaconazole administered in single and multiple doses in healthy adults. Antimicrob Agents Chemother. 2003;47:2788–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoenigl M, Raggam RB, Salzer HJ, Valentin T, Valentin A, Zollner-Schwetz I, et al. Posaconazole plasma concentrations and invasive mould infections in patients with haematological malignancies. Int J Antimicrob Agents. 2012;39:510–3.

    CAS  PubMed  Google Scholar 

  50. • Nguyen MH, Davis MR, Wittenberg R, et al. Posaconazole serum drug levels associated with pseudohyperaldosteronism. Clin Infect Dis. 2019. https://doi.org/10.1093/cid/ciz741Retrospective observational study examining posaconazole-induced pseudohyperaldosteronism, including an illustrated mechanism.

  51. • Patterson TF, Thompson GR 3rd, Denning DW, et al. Practice guideline for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;63:e1–60 IDSA guideline recommendations forAspergillosisspp. management.

    PubMed  PubMed Central  Google Scholar 

  52. Wu X, Clancy CJ, Rivosecchi RM, et al. Pharmacokinetics of intravenous isavuconazole in solid-organ transplant recipients. Antimicrob Agents Chemother. 2018;62:e01643–18.

    PubMed  PubMed Central  Google Scholar 

  53. Furfaro E, Signori A, Di Grazia C, et al. Serial monitoring of isavuconazole blood levels during prolonged antifungal therapy. J Antimicrob Chemother. 2019;74:2341–6.

    CAS  PubMed  Google Scholar 

  54. Eschenauer G, DePestel DD, Carver PL. Comparison of echinocandin antifungals. Ther Clin Risk Manag. 2007;3:71–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cancidas (caspofungin) [package insert].Whitehouse Station, NJ: Merck; 2019.

  56. Hall RG, Swancutt MA, Gumbo T. Fractal geometry and the pharmacometrics of micafungin in overweight, obese, and extremely obese people. Antimicrob Agents Chemother. 2011;55:5107–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wasmann RE, Ter Heine R, van Dongen EP, et al. Pharmacokinetics of anidulafungin in obese and normal-weight adults. Antimicrob Agents Chemother. 2018;62:e00063–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. • Payne KD, Hall RG. Dosing of antifungal agents in obese people. Expert Rev Anti Infect Ther. 2016;14:257–67 Useful review of antifungal pharmacokinetics and dosing considerations in obesity.

    CAS  PubMed  Google Scholar 

  59. Ryan DM, Lupinacci RJ, Kartsonis NA. Efficacy and safety of caspofungin in obese patients. Med Mycol. 2011;49:748–54.

    PubMed  Google Scholar 

  60. De Rosa FG, D’Avolio A, Corcione S, et al. Anidulafungin for Candida glabrata infective endocarditis. Antimicrob Agents Chemother. 2012;56:4552–3.

    PubMed  PubMed Central  Google Scholar 

  61. Safdar A, Rodriguez G, Zuniga J, Al Akhrass F, Pande A. High-dose caspofungin as a component of combination antifungal therapy in 91 patients with neoplastic diseases and hematopoietic stem cell transplantation: a critical review of short-term and long-term adverse events. J Pharm Pract. 2015;28:175–82.

    PubMed  Google Scholar 

  62. Sirohi B, Powles RL, Chopra R, Russell N, Byrne JL, Prentice HG, et al. A study to determine the safety profile and maximum tolerated dose of micafungin (FK463) in patients undergoing haematopoietic stem cell transplantation. Bone Marrow Transplant. 2006;38:47–51.

    CAS  PubMed  Google Scholar 

  63. Cornely OA, Maertens J, Bresnik M, Ebrahimi R, Ullmann AJ, Bouza E, et al. Liposomal amphotericin B as initial therapy for invasive mold infection: a randomized trial comparing a high-loading dose regimen with standard dosing (AmBiLoad trial). Clin Infect Dis. 2007;44:1289–97.

    CAS  PubMed  Google Scholar 

  64. Ramaswamy M, Peteherych KD, Kennedy AL, Wasan KM. Amphotericin B lipid complex or amphotericin B multiple-dose administration to rabbits with elevated plasma cholesterol levels: pharmacokinetics in plasma and blood, plasma lipoprotein levels, distribution in tissues, and renal toxicities. Antimicrob Agents Chemother. 2001;45:1184–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Vadiei K, Lopez-Berestein G, Luke DR. Disposition and toxicity of amphotericin-B in the hyperlipidemic Zucker rat model. Int J Obes. 1990;14:465–72.

    CAS  PubMed  Google Scholar 

  66. Christiansen KJ, Bernard EM, Gold JW, et al. Distribution and activity of amphotericin B in humans. J Infect Dis. 1985;152:1037–43.

    CAS  PubMed  Google Scholar 

  67. Cleary JD, Wasan K. Amphotericin B: a new look at cellular binding. Open Antimicrob Agents. 2011;3:30–6.

    CAS  Google Scholar 

  68. Walsh TJ, Goodman JL, Pappas P, Bekersky I, Buell DN, Roden M, et al. Safety, tolerance, and pharmacokinetics of high-dose liposomal amphotericin B (AmBisome) in patients infected with Aspergillus species and other filamentous fungi: maximum tolerated dose study. Antimicrob Agents Chemother. 2001;45:3487–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. van der Linden JWM, Snelders E, Kampinga GA, Rijnders BJ, Mattsson E, Debets-Ossenkopp YJ, et al. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007-2009. Emerg Infect Dis. 2011;17:1846–54.

    PubMed  PubMed Central  Google Scholar 

  70. Heinz WJ, Egerer G, Lellek H, Boehme A, Greiner J. Posaconazole after previous antifungal therapy with voriconazole for therapy of invasive Aspergillus disease, a retrospective analysis. Mycoses. 2013;56:304–10.

    CAS  PubMed  Google Scholar 

  71. Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Aspergillus section Fumigati: antifungal susceptibility patterns and sequence-based identification. Antimicrob Agents Chemother. 2008;52:1244–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Alastruey-Izquierdo A, Alcazar-Fuoli L, Cuenca-Estrella M. Antifungal susceptibility profile of cryptic species of Aspergillus. Mycopathologia. 2014;178:427–33.

    CAS  PubMed  Google Scholar 

  73. Lamoth F. Aspergillus fumigatus-related species in clinical practice. Front Microbiol. 2016;7:683.

    PubMed  PubMed Central  Google Scholar 

  74. Gregson L, Goodwin J, Johnson A, McEntee L, Moore CB, Richardson M, et al. In vitro susceptibility of Aspergillus fumigatus to isavuconazole: correlation with itraconazole, voriconazole, and posaconazole. Antimicrob Agents Chemother. 2013;57:5778–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Verweij PE, Chowdhary A, Melchers WJ, Meis JF. Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis. 2016;62:362–8.

    CAS  PubMed  Google Scholar 

  76. • Reichert-Lima F, Lyra L, Pontes L, et al. Surveillance for azoles resistance in Aspergillus spp. highlights a high number of amphotericin B resistant isolates. Mycoses. 2018;61:360–5 Study highlighting the potential for amphotericin resistance inAspergillusspp. and the need for continuous surveillance.

    CAS  PubMed  Google Scholar 

  77. Biehl LM, Vehreschild JJ, Liss B, Franke B, Markiefka B, Persigehl T, et al. A cohort study on breakthrough invasive fungal infections in high-risk patients receiving antifungal prophylaxis. J Antimicrob Chemother. 2016;71:2634–41.

    PubMed  Google Scholar 

  78. Maertens J, Raad I, Petrikkos G, Boogaerts M, Selleslag D, Petersen FB, et al. Efficacy and safety of caspofungin for treatment of invasive aspergillosis in patients refractory to or intolerant of conventional antifungal therapy. Clin Infect Dis. 2004;39:1563–71.

    CAS  PubMed  Google Scholar 

  79. Kontoyiannis DP, Ratanatharathorn V, Young JA, et al. Micafungin alone or in combination with other systemic antifungal therapies in hematopoietic stem cell transplant recipients with invasive aspergillosis. Transpl Infect Dis. 2009;11:89–93.

    CAS  PubMed  Google Scholar 

  80. Van Burik JA, Hare RS, Solomon HF, et al. Posaconazole is effective as salvage therapy in zygomycosis: a retrospective summary of 91 cases. Clin Infect Dis. 2006;42:e61–5.

    PubMed  Google Scholar 

  81. Herbrecht R, Denning D, Patterson TF, Bennett JE, Greene RE, Oestmann JW, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347:408–15.

    CAS  PubMed  Google Scholar 

  82. Denning DW, Ribaud P, Milpied N, et al. Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis. 2002;34:563–71.

    CAS  PubMed  Google Scholar 

  83. Walsh TJ, Raad I, Patterson TF, Chandrasekar P, Donowitz GR, Graybill R, et al. Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial. Clin Infect Dis. 2007;44:2–12.

    CAS  PubMed  Google Scholar 

  84. Raad II, Hanna HA, Boktour M, Jiang Y, Torres HA, Afif C, et al. Novel antifungal agents as salvage therapy for invasive aspergillosis in patients with hematologic malignancies: posaconazole compared with high-dose lipid formulations of amphotericin B alone or in combination with caspofungin. Leukemia. 2008;22:496–503.

    CAS  PubMed  Google Scholar 

  85. Pennington KM, Razonable RR, Peters S, et al. Why do lung transplant patients discontinue triazole prophylaxis? Transpl Infect Dis. 2019;21:e13067.

    PubMed  PubMed Central  Google Scholar 

  86. Hiemenz JW, Raad II, Maertens JA, Hachem RY, Saah AJ, Sable CA, et al. Efficacy of caspofungin as salvage therapy for invasive aspergillosis compared to standard therapy in a historical cohort. Eur J Clin Microbiol Infect Dis. 2010;29:1387–94.

    CAS  PubMed  Google Scholar 

  87. Ibrahim AS, Bowman JC, Avanessian V, Brown K, Spellberg B, Edwards JE Jr, et al. Caspofungin inhibits Rhizopus oryzae 1,3-beta-D-glucan synthase, lowers burden in brain measured by quantitative PCR, and improves survival at a low but not a high dose during murine disseminated zygomycosis. Antimicrob Agents Chemother. 2005;49:721–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Espiritu M, Parmar R, Stevens DA. Micafungin is active against Scedosporium apiospermum. Proceedings of the 15th International Society for Human and Animal Mycology meeting, San Antonio, TX. 2003; Abstract 143.

  89. Nailor MD, Chandrasekar PH. Treatment of breakthrough fungal infections: is there one best strategy? Curr Fungal Infect Rep. 2009;3:229–35.

    Google Scholar 

  90. Mukherjee PK, Sheehan DJ, Hitchcock CA, Ghannoum MA. Combination treatment of invasive fungal infections. Clin Microbiol Rev. 2005;18:163–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Philip A, Odabasi Z, Rodriguez J, Paetznick VL, Chen E, Rex JH, et al. In vitro synergy testing of anidulafungin with itraconazole, voriconazole, and amphotericin B against Aspergillus spp. and Fusarium spp. Antimicrob Agents Chemother. 2005;49:3572–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Katragkou A, McCarthy M, Meletiadis J, et al. In vitro combination of isavuconazole with micafungin or amphotericin B deoxycholate against medically important molds. Antimicrob Agents Chemother. 2014;58:6934–7.

    PubMed  PubMed Central  Google Scholar 

  93. Zhang M, Sun WK, Wu T, Chen F, Xu XY, Su X, et al. Efficacy of combination therapy of triazole and echinocandin in treatment of invasive aspergillosis: a systematic review of animal and human studies. J Thorac Dis. 2014;6:99–108.

    PubMed  PubMed Central  Google Scholar 

  94. Martin-Vicente A, Capilla J, Guarro J. Synergistic effect on anidulafungin combined with posaconazole in experimental aspergillosis. Med Mycol. 2017;55:457–60.

    CAS  PubMed  Google Scholar 

  95. Petraitis V, Petraitiene HWW, et al. Combination therapy in treatment of experimental pulmonary aspergillosis: in vitro and in vivo correlation of the concentration- and dose- dependent interactions between anidulafungin and voriconazole by Bliss independence drug interaction analysis. Antimicrob Agents Chemother. 2009;53:2382–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Maertens J, Glasmacher A, Herbrecht R, Thiebaut A, Cordonnier C, Segal BH, et al. Multicenter, noncomparative study of caspofungin in combination with other antifungals as salvage therapy in adults with invasive aspergillosis. Cancer. 2006;107:2888–97.

    CAS  PubMed  Google Scholar 

  97. Schaffner A, Frick PG. The effect of ketoconazole on amphotericin B in a model of disseminated aspergillosis. J Infect Dis. 1985;151:902–10.

    CAS  PubMed  Google Scholar 

  98. Polak A. Combination therapy of experimental candidiasis, cryptococcosis, aspergillosis and wangiellosis in mice. Chemotherapy. 1987;33:381–95.

    CAS  PubMed  Google Scholar 

  99. Martin-Vicente A, Capilla J, Guarro J. In vivo synergy of amphotericin B plus posaconazole in murine aspergillosis. Antimicrob Agents Chemother. 2015;60:296–300.

    PubMed  PubMed Central  Google Scholar 

  100. Elefanti A, Mouton JW, Verweij PE, Tsakris A, Zerva L, Meletiadis J. Amphotericin B and voriconazole-echinocandin combinations against Aspergillus spp.: effect of serum on inhibitory and fungicidal interactions. Antimicrob Agents Chemother. 2013;57:4656–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Rex JH, Pappas PG, Karchmet AW, et al. A randomized and blinded multicenter trial of high-dose fluconazole plus placebo versus fluconazole plus amphotericin B as therapy for candidemia and its consequences in non-neutropenic subjects. Clin Infect Dis. 2003;36:1221–8.

    CAS  PubMed  Google Scholar 

  102. Marr KA, Schlamm HT, Herbrecht R, et al. Combination antifungal therapy for invasive aspergillosis: a randomized trial. Ann Intern Med. 2015;162:81–9.

    PubMed  Google Scholar 

  103. Panackal AA, Parisini E, Proschan M. Salvage combination antifungal therapy for acute invasive aspergillosis may improve outcomes: a systematic review and meta-analysis. Int J Infect Dis. 2014;28:80–94.

    PubMed  PubMed Central  Google Scholar 

  104. Denning DW, Marr KA, Lau WM, et al. Micafungin (FK463), alone or in combination with other systemic antifungal agents, for the treatment of acute invasive aspergillosis. J Inf Secur. 2006;53:337–49.

    Google Scholar 

  105. Ibrahim AS, Gebremariam T, Fu Y, Edwards JE Jr, Spellberg B. Combination echinocandin-polyene treatment of murine mucormycosis. Antimicrob Agents Chemother. 2008;52:1556–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Reed C, Bryant R, Ibrahim AS, Edwards J Jr, Filler SG, Goldberg R, et al. Combination polyene-caspofungin treatment of rhino-orbital-cerebral mucormycosis. Clin Infect Dis. 2008;47:364–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. •• Kyvernitakis A, Torres HA, Jiang Y, et al. Initial use of combination treatment does not impact survival of 106 patients with haematologic malignancies and mucormycosis: a propensity score analysis. Clin Microbiol Infect. 2016;22:811.e1–8 This propensity analysis of over 100 patients with mucormycosis emphasizes the strong association of immune suppression with worsened clinical outcome. Combination antifungal therapy was not protective over monotherapy in this study, though residual confounding cannot be excluded.

    CAS  Google Scholar 

  108. Singh N, Aguado JM, Bonatti H, Forrest G, Gupta KL, Safdar N, et al. Zygomycosis in solid organ transplant recipients: a prospective, matched case-control study to assess risks for disease and outcome. J Infect Dis. 2009;200:1002–11.

    PubMed  Google Scholar 

  109. Pagano L, Cornely OA, Busca A, et al. Combined antifungal approach for the treatment of invasive mucormycosis in patients with hematologic diseases: a report from the SEIFEM and FUNGISCOPE registries. Haematologica. 2013;98:e127–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yustes C, Guarro J. In vitro synergistic interaction between amphotericin B and micafungin against Scedosporium spp. Antimicrob Agents Chemother. 2005;49:3498–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. • Ullmann AJ, Aguado JM, Arikan-Akdagli S, et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect. 2018;24(Suppl 1):e1–38 Guideline recommendations for aspergillosis treatment including some discussion of salvage agents.

  112. Te Dorsthorst DT, Verweij PE, Meis JF, et al. In vitro interactions between amphotericin B, itraconazole, and flucytosine against 21 clinical Aspergillus isolates determined by two drug interaction models. Antimicrob Agents Chemother. 2004;48:2007–13.

    CAS  Google Scholar 

  113. Ryder NS, Leitner I. Synergistic interaction of terbinafine with triazoles or amphotericin B against Aspergillus species. Med Mycol. 2001;39:91–5.

    CAS  PubMed  Google Scholar 

  114. Spader TB, Venturini TP, Rossato L, Denardi LB, Cavalheiro PB, Botton SA, et al. Synergysm of voriconazole or itraconazole with other antifungal agents against species of Fusarium. Rev Iberoam Micol. 2013;30:200–4.

    PubMed  Google Scholar 

  115. Meletiadis J, Mouton JW, Meis JF, Verweij PE. In vitro drug interaction modeling of combinations of azoles with terbinafine against clinical Scedosporium prolificans isolates. Antimicrob Agents Chemother. 2003;47:106–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Valenzuela Salas I, Martinez Peinado C, Fernandez Miralbell A, et al. Skin infection caused by Scedosporium apiospermum in immunocompromised patients. Report of two cases. Dermatol Online J. 2013;19:20022.

    CAS  PubMed  Google Scholar 

  117. Tóth EJ, Nagy GR, Homa M, et al. Recurrent Scedosporium apiospermum mycetoma successfully treated by surgical excision and terbinafine treatment: a case report and review of the literature. Ann Clin Microbiol Antimicrob. 2017;16:31.

    PubMed  PubMed Central  Google Scholar 

  118. Chen TC, Ho MW, Chien WC, Lin HH. Disseminated Scedosporium apiospermum infection in a near-drowning patient. J Formos Med Assoc. 2016;115:213–4.

    PubMed  Google Scholar 

  119. Whyte M, Irving H, O’Regan P, et al. Disseminated Scedosporium prolificans infection and survival of a child with acute lymphoblastic leukemia. Pediatr Infect Dis J. 2005;24:375–7.

    PubMed  Google Scholar 

  120. Howden NP, Slavin MA, Schwarer AP, et al. Successful control of disseminated Scedosporium prolificans infection with a combination if voriconazole and terbinafine. Eur J Clin Microbiol Infect Dis. 2003;22:111–3.

    CAS  PubMed  Google Scholar 

  121. Gosbell IB, Toumasatos V, Yong J, Kuo RS, Ellis DH, Perrie RC. Cure of osteopaedic infection with Scedosporium prolificans, using voriconazole plus terbinafine, without the need for radical surgery. Mycoses. 2003;46:233–6.

    CAS  PubMed  Google Scholar 

  122. • Seidel D, Meißner A, Lackner M, et al. Prognostic factors in 264 adults with invasive Scedosporium spp. and Lomentospora prolificans infection reported in the literature and FungiScope. Crit Rev Microbiol. 2019;45:1–21 Large registry study includingScedosporiumspp. andL. prolificanssusceptibility to approved and investigational antifungals.

    CAS  PubMed  Google Scholar 

  123. Imbert S, Palous M, Meyer I, Dannaoui E, Mazier D, Datry A, et al. In vitro combination of voriconazole and miltefosine against clinically relevant molds. Antimicrob Agents Chemother. 2014;58:6996–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Biswas C, Sorrell TC, Djordjevic JT, et al. In vitro activity of miltefosine as a single agent and in combination with voriconazole or posaconazole against uncommon filamentous fungal pathogens. J Antimicrob Chemother. 2013;68:2842–6.

    CAS  PubMed  Google Scholar 

  125. Compain F, Botterel F, Sitterlé E, Paugam A, Bougnoux ME, Dannaoui E. In vitro activity of miltefosine in combination with voriconazole or amphotericin B against clinical isolates of Scedosporium spp. J Med Microbiol. 2015;64:309–11.

    CAS  PubMed  Google Scholar 

  126. Quaesaet L, Stindel E, Lanternier F, Williams T, Jaffuel S, Moalic E, et al. Miltefosine-based regimen as salvage therapy in Lomentospora prolificans bone and joint infection. Med Mal Infect. 2018;48:63–5.

    CAS  PubMed  Google Scholar 

  127. Kesson AM, Bellemore MC, O’Mara TJ, Ellis DH, Sorrell TC. Scedosporium prolificans osteomyelitis in an immunocompetent child treated with a novel agent, hexadecylphospocholine (miltefosine), in combination with terbinafine and voriconazole: a case report. Clin Infect Dis. 2009;48:1257–61.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Nailor.

Ethics declarations

Conflict of Interest

Michael Nailor reports personal fees from Astellas for consulting outside the submitted work. Rajat Walia reports personal fees from Astellas outside the submitted work. Kellie Goodlet and Kelsey Spadafora declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pharmacology and Pharmacodynamics of Antifungal Agents

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodlet, K.J., Spadafora, K., Walia, R. et al. Updates in the Treatment of Breakthrough Mold Infections. Curr Fungal Infect Rep 14, 153–165 (2020). https://doi.org/10.1007/s12281-020-00387-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-020-00387-2

Keywords

Navigation