Skip to main content

Advertisement

Log in

Could Fungicides Lead to Azole Drug Resistance in a Cross-Resistance Manner among Environmental Cryptococcus Strains?

  • Clinical Mycology Lab Issues (S Cordoba, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Acquired resistance among fungal strains is a growing concern. The reasons for the emergence of this phenomenon, with great clinical implications, are only partially explained and related to the frequent use of fluconazole prophylaxis or therapeutic regimens in medical practice, and evidence of environmental origin of resistance is warranted.

Recent Findings

Soil exposed to azole fungicides may select acquired resistant fungal strains and improve the proliferation and maintenance of phenotypes in this environment. So far, the greatest focus on cross-resistance in relation to azoles is with genus Aspergillus.

Summary

In view of fungicides and drugs present similar triazole chemical structure and mechanisms of action, our results showed that fungicides in agricultural areas may decrease fungal sensibility to azole drugs, becoming a potential source of resistance for invasive human mycoses agents. The abusive usage of fungicide in agriculture could play a role in the therapeutic failure of cryptococcosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cowen LE, Anderson JB, Kohn LM. Evolution of drug resistance in Candida albicans. Annu Rev Microbiol. 2002;56:139–65. https://doi.org/10.1146/annurev.micro.56.012302.160907.

    Article  CAS  PubMed  Google Scholar 

  2. Giavini E, Menegol E. Are azole fungicides a teratogenic risk for human conceptus? Toxicol Lett. 2010;198:106–11. https://doi.org/10.1016/j.toxlet.2010.07.005.

    Article  CAS  PubMed  Google Scholar 

  3. Pirgozliev SR, Edwards SJ, Hare MC, Jenkinson P. Effect of dose rate of azoxystrobin and metconazole on the development of Fusarium head blight and the accumulation of deoxynivalenol (DON) in wheat grain. Eur J Plant Pathol. 2002;108:469–78. https://doi.org/10.1023/A:1016010812514.

    Article  CAS  Google Scholar 

  4. Azevedo MM, Faria-Ramos I, Cruz LC, Pina-Vaz C, Gonçalves RA. Genesis of azole antifungal resistance from agriculture to clinical settings. J Agric Food Chem. 2015;63:7463–8. https://doi.org/10.1021/acs.jafc.5b02728.

    Article  CAS  PubMed  Google Scholar 

  5. Hof H. Critical annotations to the use of azole antifungals for plant protection. AAC. 2001;45:2987–90. https://doi.org/10.1128/AAC.45.11.2987-2990.2001.

    Article  CAS  Google Scholar 

  6. Price CL, Parker JE, Warrilow AG, Kelly DE, Kelly SL. Azole fungicides understanding resistance mechanisms in agricultural fungal pathogens. Pest Manag Sci. 2015;71:1054–8. https://doi.org/10.1002/ps.4029.

    Article  CAS  PubMed  Google Scholar 

  7. Castro e Silva DM, Santos D, Pukinskas SR, JTU O, Oliveira L, Carvalho AF, et al. A new culture medium for recovering the agents of Cryptococcosis from environmental sources. Braz J Microbiol. 2015;46:355–8. https://doi.org/10.1590/S1517-838246220130726.

    Article  Google Scholar 

  8. Sambrook J, Fritsch EF, Maniatis T, editors. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  9. Meyer W, Castañeda A, Jackson S, Huynh M, Castañeda E. IberoAmerican cryptococcal study group molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg Infect Dis. 2003;9:189–95. https://doi.org/10.3201/eid0902.020246.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chaturvedi S, Rodeghier B, Fan J, McClelland CM, Wickes BL, Chatuverdi V. Direct PCR of Cryptococcus neoformans MATα and MATa pheromones to determine mating type, Ploidy, and variety: a tool for epidemiological and molecular pathogenesis studies. J Clin Microbiol. 2000;38:2007–9.

    Article  CAS  Google Scholar 

  11. Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts. 3rd ed. Wayne: Clinical and Laboratory Standards Institute. 2008 (Approved standard. M27-A3).

  12. Faria-Ramos I, Neves-Maia J, Ricardo E, Santos-Antunes J, Silva AT, Costa-de-Oliveira S, et al. Species distribution and in vitro antifungal susceptibility profiles of yeast isolates from invasive infections during a Portuguese multicenter survey. Eur J Clin Microbiol Infect Dis. 2014;33(12):2241–7. https://doi.org/10.1007/s10096-014-2194-8.

    Article  CAS  PubMed  Google Scholar 

  13. Laxminarayan R, Mills AJ, Breman JG, Measham AR, Alleyne G, Claeson M, et al. Advancement of global health: key messages from the disease control priorities project. Lancet. 2006;367:1193–208. https://doi.org/10.1016/S0140-6736(06)68440-7.

    Article  PubMed  Google Scholar 

  14. Bell T, Newman JA, Silverman BW, Turner SI, Liley AK. The contribution of species richness and composition to bacterial services. Nature. 2005;436:1157–60. https://doi.org/10.1038/nature03891.

    Article  CAS  PubMed  Google Scholar 

  15. Deak T. Environmental factors influencing yeasts, in biodiversity and ecophysiology of yeasts. In: Rosa CA, Peter G, editors. The Yeast Handbook. Berlin: Springer; 2006. p. 155–74.

    Google Scholar 

  16. • Kidd SE, Chow Y, Mak S, Bach PJ, Chen H, Hingston AO, et al. Characterization of environmental sources of the human and animal pathogen Cryptococcus gattii in British Columbia, Canada, and the Pacific Northwest of the United States. Appl Environ Microbiol. 2007;73:1433–43. https://doi.org/10.1128/AEM.01330-06Excelent paper on characterization of environmental sources forCryptococcus gattii.

    Article  CAS  PubMed  Google Scholar 

  17. • Firacative C, Trilles L, Meyer W. Maldi-tof MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C.gattii species complex. PLoS One. 2013;7(5):e37566. https://doi.org/10.1371/journal.pone.0037566First report on the use of MALDI-TOF methodology to distinguish the molecular types amongCryptococcusstrains.

    Article  CAS  Google Scholar 

  18. Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol. 2015;78:16–48. https://doi.org/10.1016/j.fgb.2015.02.009.

    Article  CAS  PubMed  Google Scholar 

  19. • Crestani J, Landell MF, Faganello J, Vainstein MH, Vishniac HS, Valente P. Cryptococcus terrestris sp. nov., a tremellaceous, anamorphic yeast phylogenetically related to Cryptococcus flavescens. Int J Syst Evol Microbiol. 2009;59:631–6. https://doi.org/10.1099/ijs.0.001800-0Description of novel cryptic species,Cryptococcus terrestris.

    Article  CAS  PubMed  Google Scholar 

  20. Ferreira-Paim K, Andrade-Silva L, Mora DJ, Lages-Silva E, Pedrosa AL, da Silva PR, et al. Antifungal susceptibility, enzymatic activity, PCR-fingerprinting and ITS sequencing of environmental Cryptococcus laurentii isolates from Uberaba, Minas Gerais, Brazil. Mycopathologia. 2012;174:41–52. https://doi.org/10.1007/s11046-011-9500-0.

    Article  CAS  PubMed  Google Scholar 

  21. Pedroso RDS, Ferreira JC, Candido RC. In vitro susceptibility to antifungal agents of environmental Cryptococcus spp. isolated in the city of Ribeirão Preto, São Paulo, Brazil. Mem Inst Oswaldo Cruz. 2006;101:239–43. https://doi.org/10.1590/S0074-02762006000300002.

    Article  PubMed  Google Scholar 

  22. Teodoro VLI, Gullo FP, Sardi JDCO, Torres EM, Fusco-Almeida AM, Mendes-Giannini MJS. Environmental isolation, biochemical identification, and antifungal drug susceptibility of Cryptococcus species. Rev Soc Bras Med Trop. 2013;46:759–64. https://doi.org/10.1590/0037-8682-0025-2013.

    Article  PubMed  Google Scholar 

  23. • Espinel-Ingroff A, Aller AI, Canton E, Castañón-Olivares LR, Chowdhary A, Cordoba S, et al. Cryptococcus neoformans-Cryptococcus gattii species complex an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole and voriconazole. Antimicrob Agents Chemother. 2012;56:1115–2. https://doi.org/10.1128/AAC.01115-12Cutoff values for fluconazole, itraconazole, posaconazole and voriconazole andCryptococcus neoformans-Cryptococcus gattiispecies.

    Article  CAS  Google Scholar 

  24. Anderson JB. Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nat Rev Microbiol. 2005;3:547–56. https://doi.org/10.1038/nrmicro1179.

    Article  CAS  PubMed  Google Scholar 

  25. Andrade-Silva L, Ferreira-Paim K, Mora DJ, da Silva PR, Andrade AA, Araujo NE, et al. Susceptibility profile of clinical and environmental isolates of Cryptococcus neoformans and Cryptococcus gattii in Uberaba, Minas Gerais. Brazil Med Mycol. 2013;51:635–40. https://doi.org/10.3109/13693786.2012.761737.

    Article  CAS  PubMed  Google Scholar 

  26. •• Drummond EE, Reimão JQ, ALT D, Siqueira AM. Behaviour azole fungicide and fluconazole in Cryptococcus neoformans clinical and environmental isolates. Rev Soc Bras Med Trop. 2007;40:209–11. https://doi.org/10.1590/S0037-86822007000200012First paper about resistance to azole fungicide amongCryptococcusstrains.

    Article  PubMed  Google Scholar 

  27. Liu F, Ying GG, Tao R, Zhao JL, Yang JF, Zhao LF. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ Pollut. 2009;157:1636–42. https://doi.org/10.1016/j.envpol.2008.12.021.

    Article  CAS  PubMed  Google Scholar 

  28. Bending GD, Rodriguez-Cruz MS, Lincoln SD. Fungicide impacts on microbial communities in soils with contrasting management histories. Chemosphere. 2007;69:82–8. https://doi.org/10.1016/j.chemosphere.2007.04.042.

    Article  CAS  PubMed  Google Scholar 

  29. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74:417–33. https://doi.org/10.1128/MMBR.00016-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. •• Snelders E, Rijs AJ, Kema GH, WJG M, Verweij PE. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol. 2009;75:4053–7. https://doi.org/10.1128/AEM.00231-09The authors suggested that clinical azole resistance could be related to previous exposure to azole fungicides of fungi isolates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chitescu CL, Oosterink E, de Jong J, Stolker AAML. Ultrasonic or accelerated solvent extraction followed by U-HPLC-high mass accuracy MS for screening of pharmaceuticals and fungicides in soil and plant samples. Talanta. 2012;88:653–62. https://doi.org/10.1016/j.talanta.2011.11.054.

    Article  CAS  PubMed  Google Scholar 

  32. Guo C, Li JZ, Guo BY, Wang HL. Determination and safety evaluation of difenoconazole residues in apples and soils. Bull Environ Contam Toxicol. 2010;85:427–31. https://doi.org/10.1007/s00128-010-0104-z.

    Article  CAS  PubMed  Google Scholar 

  33. Sanchez-Brunete C, Albero B, Miguel E, Tadeo JL. Determination of insecticides in honey by matrix solid-phase dispersion and gas chromatography with nitrogen–phosphorus detection and mass spectrometric confirmation. J AOAC Int. 2002;85:128–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank FAPESP for financial support for the first author (FAPESP process 2013/07221-2), Grupo Fleury for performing part of the sequencing and UNICAMP for chromatographic analysis of the soil and for performing part of the sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Possatto Fernandes Takahashi.

Ethics declarations

Conflict of Interest

Juliana Possatto Fernandes Takahashi, Leticia Marielle Feliciano, Dayane Cristina Silva Santos, Silézia Ramos, Rogério A. Oliveira, Derlene Attili-Angelis, Nadia Regina Rodrigues, Jorge Luiz Melo Sampaio, Marilena dos Anjos Martins, and Marcia Souza Carvalho Melhem declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Clinical Mycology Lab Issues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, J.P.F., Feliciano, L.M., Santos, D.C.S. et al. Could Fungicides Lead to Azole Drug Resistance in a Cross-Resistance Manner among Environmental Cryptococcus Strains?. Curr Fungal Infect Rep 14, 9–14 (2020). https://doi.org/10.1007/s12281-020-00373-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-020-00373-8

Keywords

Navigation