Skip to main content
Log in

Silver Nanoparticles Modified with Polygonatum sibiricum Polysaccharide Improve Biocompatibility and Infected Wound Bacteriostasis

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) exhibit strong antibacterial activity and do not easily induce drug resistance; however, the poor stability and biocompatibility in solution limit their widespread application. In this study, AgNPs were modified with Polygonatum sibiricum Polysaccharide (PSP) to synthesize PSP@AgNPs with good stability, biocompatibility, and antibacterial activity. When PSP@AgNP synthesis was performed under a reaction time of 70 min, a reaction temperature of 35 °C, and an AgNO3-to-PSP volume ratio of 1:1, the synthesized PSP@AgNPs were more regular and uniform than AgNPs, and their particle size was around 10 nm. PSP@AgNPs exhibited lower cytotoxicity and hemolysis, and stronger bacteriostatic activity. PSP@AgNPs damage the integrity and internal structure of cells, resulting in the leakage of intracellular nucleic acids and proteins. The rate of cell membrane damage in Escherichia coli and Staphylococcus aureus treated with PSP@AgNPs increased by 38.52% and 43.75%, respectively, compared with that of AgNPs. PSP@AgNPs inhibit the activities of key enzymes related to antioxidant, energy and substance metabolism in cells. The inhibitory effects on the activities of superoxide dismutase (SOD), catalase (CAT), adenosine triphosphate enzyme (ATPase), malate dehydrogenase (MDH), and succinate dehydrogenase (SDH) in E. coli and S. aureus cells were significantly higher than those of AgNPs. In addition, compared with AgNPs, PSP@AgNPs promote faster healing of infected wounds. Therefore, PSP@AgNPs represent potential antibacterial agents against wound infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abou-Taleb, H. K., Mohamed, M. I., Shawir, M. S., & Abdelgaleil, S. A. (2016). Insecticidal properties of essential oils against Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases. Natural Product Research, 30, 710–714.

    Article  CAS  PubMed  Google Scholar 

  • Adineh, V. R., Marceau, R. K. W., Velkov, T., Li, J., & Fu, J. (2016). Near-atomic three-dimensional mapping for site-specific chemistry of ‘superbugs’. Nano Letters, 16, 7113–7120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anuj, S. A., Gajera, H. P., Hirpara, D. G., & Golakiya, B. A. (2019). Bactericidal assessment of nano-silver on emerging and re-emerging human pathogens. Journal of Trace Elements in Medicine and Biology, 51, 219–225.

    Article  CAS  PubMed  Google Scholar 

  • Aravind, M., Ahmad, A., Ahmad, I., Amalanathan, M., Naseem, K., Mary, S. M. M., Parvathiraja, C., Hussain, S., Algarni, T. S., Pervaiz, M., et al. (2021). Critical green routing synthesis of silver NPs using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue. Journal of Environmental Chemical Engineering, 9, 104877.

    Article  CAS  Google Scholar 

  • Barbinta-Patrascu, M. E., Badea, N., Pirvu, C., Bacalum, M., Ungureanu, C., Nadejde, P. L., Ion, C., & Rau, I. (2016). Multifunctional soft hybrid bio-platforms based on nano-silver and natural compounds. Materials Science and Engineering: C, 69, 922–932.

    Article  CAS  PubMed  Google Scholar 

  • Blaskovich, M. A. T., Pitt, M. E., Elliott, A. G., & Cooper, M. A. (2018). Can octapeptin antibiotics combat extensively drug-resistant (XDR) bacteria? Expert Review of Anti-infective Therapy, 16, 485–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, Z., Dai, Q., Guo, Y., Wei, Y., Wu, M., & Zhang, H. (2019a). Glycyrrhiza polysaccharide-mediated synthesis of silver nanoparticles and their use for the preparation of nanocomposite curdlan antibacterial film. International Journal of Biological Macromolecules, 141, 422–430.

    Article  CAS  PubMed  Google Scholar 

  • Cai, T., Fang, G., Tian, X., Yin, J. J., Chen, C., & Ge, C. (2019b). Optimization of antibacterial efficacy of noble-metal-based core-shell nanostructures and effect of natural organic matter. Acs Nano, 13, 12694–12702.

    Article  CAS  PubMed  Google Scholar 

  • Cai, J. L., Li, X. P., Zhu, Y. L., Yi, G. Q., Wang, W., Chen, X. Y., Deng, G. M., Yang, L., Cai, H. Z., Tong, Q. Z., et al. (2021). Polygonatum sibiricum polysaccharides (PSP) improve the palmitic acid (PA)-induced inhibition of survival, inflammation, and glucose uptake in skeletal muscle cells. Bioengineered, 12, 10147–10159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W., Cheng, H., & Xia, W. (2022). Construction of Polygonatum sibiricum polysaccharide functionalized selenium nanoparticles for the enhancement of stability and antioxidant activity. Antioxidants, 11, 240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, T., Li, S., Chen, S., Liang, Y., Sun, H., & Wang, L. (2021). Stealth” dendrimers with encapsulation of indocyanine green for photothermal and photodynamic therapy of cancer. International Journal of Pharmaceutics, 600, 120502.

    Article  CAS  PubMed  Google Scholar 

  • Cui, X., Wang, S., Cao, H., Guo, H., Li, Y., Xu, F., Zheng, M., Xi, X., & Han, C. (2018). A review: The bioactivities and pharmacological applications of Polygonatum sibiricum polysaccharides. Molecules, 23, 1170.

    Article  PubMed  PubMed Central  Google Scholar 

  • da Silva, R. M., Traebert, J., & Galato, D. (2012). Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae: A review of epidemiological and clinical aspects. Expert Opinion on Biological Therapy, 12, 663–671.

    Article  PubMed  Google Scholar 

  • Emam, H. E., & Ahmed, H. B. (2016). Polysaccharides templates for assembly of nanosilver. Carbohydrate Polymers, 135, 300–307.

    Article  CAS  PubMed  Google Scholar 

  • Gawlikowski, M., Fray, E., Janiczak, M., Zawidlak-Węgrzyńska, K., B., and, & Kustosz, R. (2020). In-vitro biocompatibility and hemocompatibility study of new PET copolyesters intended for heart assist devices. Polymers, 12, 2857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsueh, Y. H., Hsieh, C. T., Chiu, S. T., Tsai, P. H., Liu, C. Y., & Ke, W. J. (2019). Antibacterial property of composites of reduced graphene oxide with nano-silver and zinc oxide nanoparticles synthesized using a microwave-assisted approach. International Journal of Molecular Sciences, 20, 5394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, D., Li, H., Wang, B., Ye, Z., Lei, W., Jia, F., Jin, Q., Ren, K. F., & Ji, J. (2017). Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillin-resistant Staphylococcus aureus biofilm. Acs Nano, 11, 9330–9339.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Z., He, K., Song, Z., Zeng, G., Chen, A., Yuan, L., Li, H., Hu, L., Guo, Z., & Chen, G. (2018). Antioxidative response of Phanerochaete chrysosporium against silver nanoparticle-induced toxicity and its potential mechanism. Chemosphere, 211, 573–583.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal, K., Iqbal, A., Kirillov, A. M., Shan, C., Liu, W., & Tang, Y. (2018). A new multicomponent CDs/Ag@Mg-Al-Ce-LDH nanocatalyst for highly efficient degradation of organic water pollutants. Journal of Materials Chemistry A, 6, 4515–4524.

    Article  CAS  Google Scholar 

  • Khan, F., Lee, J. W., Manivasagan, P., Pham, D. T. N., Oh, J., & Kim, Y. M. (2019). Synthesis and characterization of chitosan oligosaccharide-capped gold nanoparticles as an effective antibiofilm drug against the Pseudomonas aeruginosa PAO1. Microbial Pathogenesis, 135,103623.

  • Kim, S. H., Lee, J. H., Kim, S. E., Shin, S. H., Kim, H. J., Lee, S. J., Kim, J. H., & Suh, I. S. (2021). Retrospective study of the efficacy of vascularized tissue transfer for treating antibiotic-resistant bacteria-infected wound: Comparison with clean and antibiotic-sensitive bacteria-infected wound. Medicine, 100, e25907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, K., Liu, Z., Liu, X., Wang, L., Zhao, J., Zhang, X., Kong, Y., & Chen, M. (2021a). An anti-biofilm material: Polysaccharides prevent the precipitation reaction of silver ions and chloride ions and lead to the synthesis of nano silver chloride. Nanotechnology, 32, 315601.

    Article  CAS  Google Scholar 

  • Li, W., Song, P., Xin, Y., Kuang, Z., Liu, Q., Ge, F., Zhu, L., Zhang, X., Tao, Y., & Zhang, W. (2021b). The effects of luminescent CdSe quantum dot-functionalized antimicrobial peptides nanoparticles on antibacterial activity and molecular mechanism. International Journal of Nanomedicine, 16, 1849–1867.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, R., Tao, A., Yang, R., Fan, M., Zhang, X., Du, Z., Shang, F., Xia, C., & Duan, B. (2020). Structural characterization, hypoglycemic effects and antidiabetic mechanism of a novel polysaccharides from Polygonatum kingianum Coll. et Hemsl. Biomedicine and Pharmacotherapy, 131, 110687.

    Article  CAS  PubMed  Google Scholar 

  • Llavanera, M., Mislei, B., Blanco-Prieto, O., Baldassarro, V. A., Mateo-Otero, Y., Spinaci, M., Yeste, M., & Bucci, D. (2022). Assessment of sperm mitochondrial activity by flow cytometry and fluorescent microscopy: A comparative study of mitochondrial fluorescent probes in bovine spermatozoa. Reproduction Fertility and Development, 34, 679–688.

    Article  CAS  PubMed  Google Scholar 

  • Marimuthu, S., Antonisamy, A. J., Malayandi, S., Rajendran, K., Tsai, P. C., Pugazhendhi, A., & Ponnusamy, V. K. (2020). Silver nanoparticles in dye effluent treatment: A review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. Journal of Photochemistry and Photobiology B: Biology, 205, 111823.

    Article  CAS  PubMed  Google Scholar 

  • Meng, Y., Zhang, H., Hu, N., Zhang, B., Qiu, Z., Hu, J., Zheng, G., Zhang, L., & Xu, X. (2021). Construction of silver nanoparticles by the triple helical polysaccharide from black fungus and the antibacterial activities. International Journal of Biological Macromolecules, 182, 1170–1178.

    Article  CAS  PubMed  Google Scholar 

  • Moghadam, M. T., Shariati, A., Mirkalantari, S., & Karmostaji, A. (2020). The complex genetic region conferring transferable antibiotic resistance in multidrug-resistant and extremely drug-resistant Klebsiella pneumoniae clinical isolates. New Microbes and New Infections, 36, 100693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutlu-Ingok, A., & Karbancioglu-Guler, F. (2017). Cardamom, cumin, and dill weed essential oils: Chemical compositions, antimicrobial activities, and mechanisms of action against Campylobacter spp. Molecules, 22, 1191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasiriboroumand, M., Montazer, M., & Barani, H. (2018). Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract. Journal of Photochemistry and Photobiology B: Biology, 179, 98–104.

    Article  CAS  PubMed  Google Scholar 

  • Nethi, S. K., Das, S., Patra, C. R., & Mukherjee, S. (2019). Recent advances in inorganic nanomaterials for wound-healing applications. Biomaterials Science, 7, 2652–2674.

    Article  CAS  PubMed  Google Scholar 

  • Ofori-Asenso, R. (2017). When the bug cannot be killed”-the rising challenge of antimicrobial resistance. Medicines, 4, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paderog, M. J. V., Suarez, A. F. L., Sabido, E. M., Low, Z. J., Saludes, J. P., & Dalisay, D. S. (2020). Anthracycline shunt metabolites from philippine marine sediment-derived Streptomyces destroy cell membrane integrity of multidrug-resistant Staphylococcus aureus. Frontiers in Microbiology, 11, 743.

    Article  PubMed  PubMed Central  Google Scholar 

  • Padinjarathil, H., Joseph, M. M., Unnikrishnan, B. S., Preethi, G. U., Shiji, R., Archana, M. G., Maya, S., Syama, H. P., & Sreelekha, T. T. (2018). Galactomannan endowed biogenic silver nanoparticles exposed enhanced cancer cytotoxicity with excellent biocompatibility. International Journal of Biological Macromolecules, 118, 1174–1182.

    Article  CAS  PubMed  Google Scholar 

  • Pei, Q., Li, Y., Ge, X., & Tian, P. (2019). Multipath effects of berberine on peach brown rot fungus Monilinia fructicola. Crop Protection, 116, 92–100.

    Article  CAS  Google Scholar 

  • Pournaras, S., Vrioni, G., Neou, E., Dendrinos, J., Dimitroulia, E., Poulou, A., & Tsakris, A. (2011). Activity of tigecycline alone and in combination with colistin and meropenem against Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae strains by time-kill assay. International Journal of Antimicrobial Agents, 37, 244–247.

    Article  CAS  PubMed  Google Scholar 

  • Prabakaran, M., Rajakannu, S., Adhimoolam, L. K., & Gupta, M. (2021). In vitro degradation, haemolysis and cytotoxicity study of Mg-0.4Ce/ZnO2 nanocomposites. IET Nanobiotechnology, 15, 157–163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qayyum, S., Oves, M., & Khan, A. U. (2017). Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLoS ONE, 12, e0181363.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramalingam, B., Parandhaman, T., & Das, S. K. (2016). Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of Gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials and Interfaces, 8, 4963–4976.

    Article  CAS  PubMed  Google Scholar 

  • Randall, C. P., Gupta, A., Jackson, N., Busse, D., & O’Neill, A. J. (2015). Silver resistance in Gram-negative bacteria: A dissection of endogenous and exogenous mechanisms. The Journal of Antimicrobial Chemotherapy, 70, 1037–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero, M., Keyel, M., Shi, G., Bhattacharjee, P., Roth, R., Heuser, J. E., & Keyel, P. A. (2017). Intrinsic repair protects cells from pore-forming toxins by microvesicle shedding. Cell Death and Differentiation, 24, 798–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadura, I., Libik-Konieczny, M., Jurczyk, B., Gruszka, D., & Janeczko, A. (2020). Plasma membrane ATPase and the aquaporin HvPIP1 in barley brassinosteroid mutants acclimated to high and low temperature. Journal of Plant Physiology, 244, 153090.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz, S., & Johnson, A. P. (2016). Transferable resistance to colistin: A new but old threat. The Journal of Antimicrobial Chemotherapy, 71, 2066–2070.

    Article  PubMed  Google Scholar 

  • Scott, Z. W., Choi, S. R., Talmon, G. A., Britigan, B. E., & Narayanasamy, P. (2022). Combining gallium protoporphyrin and gallium nitrate enhances in vitro and in vivo efficacy against Pseudomonas aeruginosa: Role of inhibition of bacterial antioxidant enzymes and resultant increase in cytotoxic reactive oxygen species. ACS Infectious Diseases, 8, 2096–2105.

    Article  CAS  PubMed  Google Scholar 

  • Seerangaraj, V., Sathiyavimal, S., Shankar, S. N., Nandagopal, J. G. T., Balashanmugam, P., Al-Misned, F. A., Shanmugavel, M., Senthilkumar, P., & Pugazhendhi, A. (2021). Cytotoxic effects of silver nanoparticles on Ruellia tuberosa: Photocatalytic degradation properties against crystal violet and coomassie brilliant blue. Journal of Environmental Chemical Engineering, 9, 105088.

    Article  CAS  Google Scholar 

  • Shen, F., Song, Z., Xie, P., Li, L., Wang, B., Peng, D., & Zhu, G. (2021). Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage. Journal of Ethnopharmacology, 275, 114164.

    Article  CAS  PubMed  Google Scholar 

  • Shu, G., Xu, D., Zhao, J., Yin, L., Lin, J., Fu, H., Tang, H., Fang, J., Peng, X., & Zhao, X. (2021). Protective effect of Polygonatum sibiricum polysaccharide on cyclophosphamide-induced immunosuppression in chickens. Research in Veterinary Science, 135, 96–105.

    Article  CAS  PubMed  Google Scholar 

  • Sivasankar, P., Seedevi, P., Poongodi, S., Sivakumar, M., Murugan, T., Sivakumar, L., Sivakumar, K., & Balasubramanian, T. (2018). Characterization, antimicrobial and antioxidant property of exopolysaccharide mediated silver nanoparticles synthesized by Streptomyces violaceus MM72. Carbohydrate Polymers, 181, 752–759.

    Article  CAS  PubMed  Google Scholar 

  • Slavin, Y. N., Asnis, J., Häfeli, U. O., & Bach, H. (2017). Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 15, 65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, H., Wang, Q., He, A., Li, S., Guan, X., Hu, Y., & Feng, S. (2022). Antioxidant activity, storage stability and in vitro release of epigallocatechin-3-gallate (EGCG) encapsulated in hordein nanoparticles. Food Chemistry, 388, 132903.

    Article  CAS  PubMed  Google Scholar 

  • Subbiah, M., Caudell, M. A., Mair, C., Davis, M. A., Matthews, L., Quinlan, R. J., Quinlan, M. B., Lyimo, B., Buza, J., Keyyu, J., et al. (2020). Antimicrobial resistant enteric bacteria are widely distributed amongst people, animals and the environment in Tanzania. Nature Communications, 11, 228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, J., Kroeger, J. L., & Markowitz, J. (2021). Introduction to multiparametric flow cytometry and analysis of high-dimensional data. In J. Markowitz (Ed.), Translational bioinformatics for therapeutic development. Methods in molecular biology (Vol. 2194, pp. 239–253). Humana.

    Chapter  Google Scholar 

  • Sütterlin, S., Tano, E., Bergsten, A., Tallberg, A. B., & Melhus, A. (2012). Effects of silver-based wound dressings on the bacterial flora in chronic leg ulcers and its susceptibility in vitro to silver. Acta Dermato Venereologica, 92, 34–39.

    Article  PubMed  Google Scholar 

  • Travlou, N. A., Algarra, M., Alcoholado, C., Cifuentes-Rueda, M., Labella, A. M., Lázaro-Martínez, J. M., Rodríguez-Castellón, E., & Bandosz, T. J. (2018). Carbon quantum dot surface-chemistry-dependent Ag release governs the high antibacterial activity of Ag-metal-organic framework composites. ACS Applied Biomaterials, 1, 693–707.

    Article  CAS  Google Scholar 

  • Wang, D., Xue, B., Wang, L., Zhang, Y., Liu, L., & Zhou, Y. (2021). Fungus-mediated green synthesis of nano-silver using aspergillus sydowii and its antifungal/antiproliferative activities. Scientific Reports, 11, 10356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Xue, T., Wang, S., Jia, X., Cao, S., Niu, B., Guo, R., & Yan, H. (2022). Preparation, characterization and food packaging application of nano ZnO@Xylan/quaternized xylan/polyvinyl alcohol composite films. International Journal of Biological Macromolecules, 215, 635–645.

    Article  CAS  PubMed  Google Scholar 

  • Woehl, T. J., Park, C., Evans, J. E., Arslan, I., Ristenpart, W. D., & Browning, N. D. (2014). Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate. Nano Letters, 14, 373–378.

    Article  CAS  PubMed  Google Scholar 

  • Xia, M. Y., Xie, Y., Yu, C. H., Chen, G. Y., Li, Y. H., Zhang, T., & Peng, Q. (2019). Graphene-based nanomaterials: The promising active agents for antibiotics-independent antibacterial applications. Journal of Controlled Release, 307, 16–31.

    Article  CAS  PubMed  Google Scholar 

  • Xie, Y., Jiang, Z., Yang, R., Ye, Y., Pei, L., Xiong, S., Wang, S., Wang, L., & Liu, S. (2021). Polysaccharide-rich extract from Polygonatum sibiricum protects hematopoiesis in bone marrow suppressed by triple negative breast cancer. Biomedicine and Pharmacotherapy, 137, 111338.

    Article  CAS  PubMed  Google Scholar 

  • Zahran, M. K., Ahmed, H. B., & El-Rafie, M. H. (2014). Alginate mediate for synthesis controllable sized AgNPs. Carbohydrate Polymers, 111, 10–17.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Gao, K., Wang, C., & Liu, S. (2021). A novel antibacterial component and the mechanisms of an Amaranthus tricolor leaf ethyl acetate extract against Acidovorax avenae subsp. citrulli. International Journal of Molecular Sciences, 23, 312.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Qin, M., Yin, J., Liu, X., Zhou, J., Zhu, Y., & Liu, Y. (2022). Antibacterial activity and mechanism of ginger extract against Ralstonia solanacearum. Journal of Applied Microbiology, 133, 2642–2654.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, L., Lian, K., Wang, M., Jing, X., Zhang, Y., & Cao, J. (2022). The antimicrobial effect of a novel peptide LL-1 on Escherichia coli by increasing membrane permeability. BMC Microbiology, 22, 220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Scientific Research Project of Colleges and Universities in Anhui Province (NOs. KJ2020A0374; KJ2021A0840; YJS20210451), and the scientific research fund for key projects of Wannan Medical College (NO. wk2021z20).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation of the manuscript. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Senhe Qian.

Ethics declarations

Conflict of interest

The authors have no competing financial interest to declare.

Ethical statements

All animals were housed according to the guidelines outlined in the “Guide for the Care and Use of Laboratory Animals”. All animal experiments were approved by the Wannan Medical College (Wuhu, China) Animal Care (Approval Number: 2021-LLSC-047).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1453 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Li, R., Zheng, P. et al. Silver Nanoparticles Modified with Polygonatum sibiricum Polysaccharide Improve Biocompatibility and Infected Wound Bacteriostasis. J Microbiol. 61, 543–558 (2023). https://doi.org/10.1007/s12275-023-00042-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00042-8

Keywords

Navigation