Skip to main content
Log in

Development of DNA aptamers specific for small therapeutic peptides using a modified SELEX method

  • Protocol
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Aptamers are short single-stranded DNA or RNA oligonucleotides capable of binding with high affinity and specificity to target molecules. Because of their durability and ease of synthesis, aptamers are used in a wide range of biomedical fields, including the diagnosis of diseases and targeted delivery of therapeutic agents. The aptamers were selected using a process called systematic evolution of ligands by exponential enrichment (SELEX), which has been improved for various research purposes since its development in 1990. In this protocol, we describe a modified SELEX method that rapidly produces high aptamer screening yields using two types of magnetic beads. Using this method, we isolated an aptamer that specifically binds to an antimicrobial peptide. We suggest that by conjugating a small therapeutic-specific aptamer to a gold nanoparticle-based delivery system, which enhances the stability and intracellular delivery of peptides, aptamers selected by our method can be used for the development of therapeutic agents utilizing small therapeutic peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aquino-Jarquin, G. and Toscano-Garibay, J.D. 2011. RNA aptamer evolution: two decades of SELEction. Int. J. Mol. Sci. 12, 9155–9171.

    Article  CAS  Google Scholar 

  • Blind, M. and Blank, M. 2015. Aptamer selection technology and recent advances. Mol. Ther. Nucleic Acids 4, e223.

    Article  Google Scholar 

  • Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10, 421.

    Article  Google Scholar 

  • Cibiel, A., Dupont, D.M., and Ducongé, F. 2011. Methods to identify aptamers against cell surface biomarkers. Pharmaceuticals 4, 1216–1235.

    Article  CAS  Google Scholar 

  • Darmostuk, M., Rimpelova, S., Gbelcova, H., and Ruml, T. 2015. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol. Adv. 33, 1141–1161.

    Article  CAS  Google Scholar 

  • Deslouches, B., Gonzalez, I.A., DeAlmeida, D., Islam, K., Steele, C., Montelaro, R.C., and Mietzner, T.A. 2007. De novo-derived cationic antimicrobial peptide activity in a murine model of Pseudomonas aeruginosa bacteraemia. J. Antimicrob. Chemother. 60, 669–672.

    Article  CAS  Google Scholar 

  • Ellington, A.D. and Szostak, J.W. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822.

    Article  CAS  Google Scholar 

  • Ellington, A.D. and Szostak, J.W. 1992. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355, 850–852.

    Article  CAS  Google Scholar 

  • Huang, Y.F., Shangguan, D., Liu, H., Phillips, J.A., Zhang, X., Chen, Y., and Tan, W. 2009. Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. Chembiochem 10, 862–868.

    Article  CAS  Google Scholar 

  • Jenison, R.D., Gill, S.C., Pardi, A., and Polisky, B. 1994. High-resolution molecular discrimination by RNA. Science 263, 1425–1429.

    Article  CAS  Google Scholar 

  • Jing, M. and Bowser, M.T. 2011. Isolation of DNA aptamers using micro free flow electrophoresis. Lab Chip 11, 3703–3709.

    Article  CAS  Google Scholar 

  • Kong, H.Y. and Byun, J. 2013. Nucleic acid aptamers: new methods for selection, stabilization, and application in biomedical science. Biomol. Ther. 21, 423–434.

    Article  Google Scholar 

  • Lee, B., Park, J., Ryu, M., Kim, S., Joo, M., Yeom, J.H., Kim, S., Park, Y., Lee, K., and Bae, J. 2017. Antimicrobial peptide-loaded gold nanoparticle-DNA aptamer conjugates as highly effective antibacterial therapeutics against Vibrio vulnificus. Sci. Rep. 7, 13572.

    Article  Google Scholar 

  • Luo, Y.L., Shiao, Y.S., and Huang, Y.F. 2011. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 5, 7796–7804.

    Article  CAS  Google Scholar 

  • Mahlapuu, M., Håkansson, J., Ringstad, L., and Björn, C. 2016. Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell. Infect. Microbiol. 6, 194.

    Article  Google Scholar 

  • Makabenta, J.M.V., Nabawy, A., Li, C.H., Schmidt-Malan, S., Patel, R., and Rotello, V.M. 2021. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 19, 23–36.

    Article  CAS  Google Scholar 

  • Mendonsa, S.D. and Bowser, M.T. 2004. In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Anal. Chem. 76, 5387–5392.

    Article  CAS  Google Scholar 

  • Nimjee, S.M., Rusconi, C.P., and Sullenger, B.A. 2005. Aptamers: an emerging class of therapeutics. Annu. Rev. Med. 56, 555–583.

    Article  CAS  Google Scholar 

  • Park, J., Shin, E., Yeom, J.H., Choi, Y., Joo, M., Lee, M., Kim, J.H., Bae, J., and Lee, K. 2022. Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice. J. Microbiol. 60, 128–136.

    Article  CAS  Google Scholar 

  • Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584.

    Article  Google Scholar 

  • Ryu, M., Park, J., Yeom, J.H., Joo, M., and Lee, K. 2021. Rediscovery of antimicrobial peptides as therapeutic agents. J. Microbiol. 59, 113–123.

    Article  CAS  Google Scholar 

  • Setlem, K., Mondal, B., Ramlal, S., and Kingston, J. 2016. Immuno affinity SELEX for simple, rapid, and cost-effective aptamer enrichment and identification against aflatoxin B1. Front. Microbiol. 7, 1909.

    Article  Google Scholar 

  • Song, Y., Zhu, Z., An, Y., Zhang, W., Zhang, H., Liu, D., Yu, C., Duan, W., and Yang, C.J. 2013. Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal. Chem. 85, 4141–4149.

    Article  CAS  Google Scholar 

  • Stoltenburg, R., Reinemann, C., and Strehlitz, B. 2005. FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal. Bioanal. Chem. 383, 83–91.

    Article  CAS  Google Scholar 

  • Tuerk, C. and Gold, L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510.

    Article  CAS  Google Scholar 

  • Wan, Y., Kim, Y., Li, N., Cho, S.K., Bachoo, R., Ellington, A.D., and Iqbal, S.M. 2010. Surface-immobilized aptamers for cancer cell isolation and microscopic cytology. Cancer Res. 70, 9371–9380.

    Article  CAS  Google Scholar 

  • Yang, Y., Yang, D., Schluesener, H.J., and Zhang, Z. 2007. Advances in SELEX and application of aptamers in the central nervous system. Biomol. Eng. 24, 583–592.

    Article  CAS  Google Scholar 

  • Yazdian-Robati, R., Ramezani, M., Khedri, M., Ansari, N., Abnous, K., and Taghdisi, S.M. 2017. An aptamer for recognizing the transmembrane protein PDL-1 (programmed death-ligand 1), and its application to fluorometric single cell detection of human ovarian carcinoma cells. Microchim. Acta 184, 4029–4035.

    Article  CAS  Google Scholar 

  • Yeom, J.H., Lee, B., Kim, D., Lee, J., Kim, S., Bae, J., Park, Y., and Lee, K. 2016. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intra-cellular Salmonella enterica serovar Typhimurium. Biomaterials 104, 43–51.

    Article  CAS  Google Scholar 

  • Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A. 2014. PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics 30, 614–620.

    Article  CAS  Google Scholar 

  • Zhou, J. and Rossi, J. 2017. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181–202.

    Article  CAS  Google Scholar 

  • Zhuo, Z., Yu, Y., Wang, M., Li, J., Zhang, Z., Liu, J., Wu, X., Lu, A., Zhang, G., and Zhang, B. 2017. Recent advances in SELEX technology and aptamer applications in biomedicine. Int. J. Mol. Sci. 18, 2142.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Animal Disease Management Technology Advancement Support Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) [grant number: 122060-02-1-CG000 to J. B.] and the National Research Foundation of Korea [NRF-2021R1A2C3008934 to K. L]. This research was also supported by Chung-Ang University Graduate Research Scholarship grants in 2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeehyeon Bae or Kangseok Lee.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Ryu, M., Bae, D. et al. Development of DNA aptamers specific for small therapeutic peptides using a modified SELEX method. J Microbiol. 60, 659–667 (2022). https://doi.org/10.1007/s12275-022-2235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-2235-4

Keywords

Navigation