Skip to main content
Log in

Alpha-Hemolysin from Staphylococcus aureus Obstructs Yeast-Hyphae Switching and Diminishes Pathogenicity in Candida albicans

  • Microbial Pathogenesis and Host-microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The use of antibiotics can disrupt the body’s natural balance and increase the susteptibility of patients towards fungal infections. Candida albicans is a dimorphic opportunistic fungal pathogen with niches similar to those of bacteria. Our aim was to study the interaction between this pathogen and bacteria to facilitate the control of C. albicans infection. Alpha-hemolysin (Hla), a protein secreted from Staphylococcus aureus, causes cell wall damage and impedes the yeast–hyphae transition in C. albicans. Mechanistically, Hla stimulation triggered the formation of reactive oxygen species that damaged the cell wall and mitochondria of C. albicans. The cell cycle was arrested in the G0/G1 phase, CDC42 was downregulated, and Ywp1 was upregulated, disrupting yeast hyphae switching. Subsequently, hyphae development was inhibited. In mouse models, C. albicans pretreated with Hla reduced the C. albicans burden in skin and vaginal mucosal infections, suggesting that S. aureus Hla can inhibit hyphal development and reduce the pathogenicity of candidiasis in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author [Xiaoyu Yu and Wenjuan Wu], upon reasonable request.

References

  • Avci, P., Freire, F., Banvolgyi, A., Mylonakis, E., Wikonkal, N. M., & Hamblin, M. R. (2016). Sodium ascorbate kills Candida albicans in vitro via iron-catalyzed Fenton reaction: Importance of oxygenation and metabolism. Future Microbiology, 11, 1535–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachtiar, E. W., Dewiyani, S., Surono Akbar, S. M., & Bachtiar, B. M. (2016). Inhibition of Candida albicans biofilm development by unencapsulated Enterococcus faecalis cps2. Journal of Dental Sciences, 11, 323–330.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernard, C., Girardot, M., & Imbert, C. (2020). Candida albicans interaction with Gram-positive bacteria within interkingdom biofilms. Journal De Mycologie Médicale, 30, 100909.

    Article  CAS  PubMed  Google Scholar 

  • Bertolini, M., & Dongari-Bagtzoglou, A. (2019). The relationship of Candida albicans with the oral bacterial microbiome in health and disease. Advances in Experimental Medicine and Biology, 1197, 69–78.

    Article  CAS  PubMed  Google Scholar 

  • Boris, S., & Barbés, C. (2000). Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes and Infection, 2, 543–546.

    Article  CAS  PubMed  Google Scholar 

  • Braidy, N., Guillemin, G. J., Mansour, H., Chan-Ling, T., Poljak, A., & Grant, R. (2011). Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS ONE, 6, e19194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno, V. M., Kalachikov, S., Subaran, R., Nobile, C. J., Kyratsous, C., & Mitchell, A. P. (2006). Control of the C. albicans cell wall damage response by transcriptional regulator Cas5. PLoS Pathogen, 2, e21.

    Article  Google Scholar 

  • Cavalcanti, Y. W., Morse, D. J., da Silva, W. J., Del-Bel-Cury, A. A., Wei, X., Wilson, M., Milward, P., Lewis, M., Bradshaw, D., & Williams, D. W. (2015). Virulence and pathogenicity of Candida albicans is enhanced in biofilms containing oral bacteria. Biofouling, 31, 27–38.

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti, A., & Sharma, M. (2019). Epidemiology of Emerging Fungal Infections in ICU. Current Fungal Infection Reports, 13, 1–10.

  • Cruz, M. R., Graham, C. E., Gagliano, B. C., Lorenz, M. C., & Garsin, D. A. (2013). Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infection and Immunity, 81, 189–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhakal, B. K., & Mulvey, M. A. (2012). The UPEC pore-forming toxin α-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host & Microbe, 11, 58–69.

    Article  CAS  Google Scholar 

  • Enjalbert, B., Rachini, A., Vediyappan, G., Pietrella, D., Spaccapelo, R., Vecchiarelli, A., Brown, A. J., & d’Enfert, C. (2009). A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infection and Immunity, 77, 4847–4858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fehrmann, C., Jurk, K., Bertling, A., Seidel, G., Fegeler, W., Kehrel, B. E., Peters, G., Becker, K., & Heilmann, C. (2013). Role for the fibrinogen-binding proteins coagulase and Efb in the Staphylococcus aureus-Candida interaction. International Journal of Medical Microbiology, 303, 230–238.

    Article  CAS  PubMed  Google Scholar 

  • Granger, B. L. (2018). Accessibility and contribution to glucan masking of natural and genetically tagged versions of yeast wall protein 1 of Candida albicans. PLoS ONE, 13, e0191194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Granger, B. L., Flenniken, M. L., Davis, D. A., Mitchell, A. P., & Cutler, J. E. (2005). Yeast wall protein 1 of Candida albicans. Microbiology, 151, 1631–1644.

    Article  CAS  PubMed  Google Scholar 

  • Heilmann, C. J., Sorgo, A. G., Siliakus, A. R., Dekker, H. L., Brul, S., de Koster, C. G., de Koning, L. J., & Klis, F. M. (2011). Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology, 157, 2297–2307.

    Article  CAS  PubMed  Google Scholar 

  • Henson, M. A., & Hanly, T. J. (2014). Dynamic flux balance analysis for synthetic microbial communities. IET Systems Biology, 8, 214–229.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, Y., Niu, Y., Ye, X., Zhu, C., Tong, T., Zhou, Y., Zhou, X., Cheng, L., & Ren, B. (2021). Staphylococcus aureus synergized with Candida albicans to increase the pathogenesis and drug resistance in cutaneous abscess and peritonitis murine models. Pathogens, 10, 1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, M. K., Watanabe, M., Zhu, S., Graves, C. L., Keyes, L. R., Grau, K. R., Gonzalez-Hernandez, M. B., Iovine, N. M., Wobus, C. E., Vinjé, J., Tibbetts, S. A., Wallet, S. M., & Karst, S. M. (2014). Enteric bacteria promote human and mouse norovirus infection of B cells. Science, 346, 755–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña E. (2021). The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22, 4642.

  • Mason, K. L., Erb Downward, J. R., Mason, K. D., Falkowski, N. R., Eaton, K. A., Kao, J. Y., Young, V. B., & Huffnagle, G. B. (2012). Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infection and Immunity, 80, 3371–3380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirbod, F., Nakashima, S., Kitajima, Y., Cannon, R. D., & Nozawa, Y. (1997). Molecular cloning of a Rho family, CDC42Ca gene from Candida albicans and its mRNA expression changes during morphogenesis. Journal of Medical and Veterinary Mycology, 35, 173–179.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, T., Naguro, I., & Ichijo, H. (2019). Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochimica et Biophysica Acta - General Subjects, 1863, 1398–1409.

  • Noble, S. M., Gianetti, B. A., & Witchley, J. N. (2017). Candida albicans cell-type switching and functional plasticity in the mammalian host. Nature Reviews Microbiology, 15, 96–108.

    Article  CAS  PubMed  Google Scholar 

  • Pérez, J. C. (2019). Candida albicans dwelling in the mammalian gut. Current Opinion in Microbiology, 52, 41–46.

  • Scheres, N., & Krom, B. P. (2016). Staphylococcus-Candida interaction models: antibiotic resistance testing and host interactions. Methods in Molecular Biology, 1356, 153–161.

    Article  CAS  PubMed  Google Scholar 

  • Seneviratne, C. J., Wang, Y., Jin, L., Abiko, Y., & Samaranayake, L. P. (2008). Candida albicans biofilm formation is associated with increased anti-oxidative capacities. Proteomics, 8, 2936–2947.

    Article  CAS  PubMed  Google Scholar 

  • Sjövall, J., Huitfeldt, B., Magni, L., & Nord, C. E. (1986). Effect of beta-lactam prodrugs on human intestinal microflora. Scandinavian Journal of Infectious Diseases. Supplementum, 49, 73–84.

    PubMed  Google Scholar 

  • Yu, X. Y., Fu, F., Kong, W. N., Xuan, Q. K., Wen, D. H., Chen, X. Q., He, Y. M., He, L. H., Guo, J., Zhou, A. P., Xi, Y. H., Ni, L. J., Yao, Y. F., & Wu, W. J. (2018). Streptococcus agalactiae inhibits Candida albicans hyphal development and diminishes host vaginal mucosal TH17 response. Frontiers in Microbiology, 9, 198.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81801987) and Shanghai Municipal Commission of Health and Family Planning (No. PKJ2018-Y05). We are grateful to Changbing Chen at the Institut Pasteur of Shanghai for guiding us. We are appreciative to Lageveen, Beth A at Purdue University, for critical reading of the manuscript. We also thank members of the Department of Laboratory Medicine in East hospital for helpful advice and discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyu Yu or Wenjuan Wu.

Ethics declarations

Conflict of Interest

None declared.

Ethical Statement

The protocol was approved by Institut Pasteur of Shanghai Chinese Academy of Sciences (IPS) IACUC [A20150013]. The regulations in the Guide for the Care and Use of Laboratory Animals proposed by the Ministry of Science and Technology of the People’s Republic of China were followed. Mice were killed using carbon dioxide inhalation.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 412 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Mao, Y., Li, G. et al. Alpha-Hemolysin from Staphylococcus aureus Obstructs Yeast-Hyphae Switching and Diminishes Pathogenicity in Candida albicans. J Microbiol. 61, 233–243 (2023). https://doi.org/10.1007/s12275-022-00006-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-00006-4

Keywords

Navigation