Skip to main content
Log in

Genome Sequencing Highlights the Plant Cell Wall Degrading Capacity of Edible Mushroom Stropharia rugosoannulata

  • Microbial Genetics, Genomics and Molecular Biology (eukaryote)
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The basidiomycetous edible mushroom Stropharia rugosoannulata has excellent nutrition, medicine, bioremediation, and biocontrol properties. S. rugosoannulata has been widely and easily cultivated using agricultural by-products showing strong lignocellulose degradation capacity. However, the unavailable high-quality genome information has hindered the research on gene function and molecular breeding of S. rugosoannulata. This study provided a high-quality genome assembly and annotation from S. rugosoannulata monokaryotic strain QGU27 based on combined Illumina-Nanopore data. The genome size was about 47.97 Mb and consisted of 20 scaffolds, with an N50 of 3.73 Mb and a GC content of 47.9%. The repetitive sequences accounted for 17.41% of the genome, mostly long terminal repeats (LTRs). A total of 15,726 coding gene sequences were putatively identified with the BUSCO score of 98.7%. There are 142 genes encoding plant cell wall degrading enzymes (PCWDEs) in the genome, and 52, 39, 30, 11, 8, and 2 genes related to lignin, cellulose, hemicellulose, pectin, chitin, and cutin degradation, respectively. Comparative genomic analysis revealed that S. rugosoannulata is superior in utilizing aldehyde-containing lignins and is possible to utilize algae during the cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Raw sequencing data have been submitted to NCBI SRA (http://www.ncbi.nlm.nih.gov/sra) under BioProject PRJNA854204. Genome assembly has been deposited at GenBank (https://www.ncbi.nlm.nih.gov/genome/) under the accession JANCIK000000000 and NMDC (https://nmdc.cn/) under the accession NMDC60045022. Genome annotation is available at figshare: https://doi.org/10.6084/m9.figshare.20324016.

References

  • Almagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne, G., & Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 37, 420–423.

    Article  CAS  PubMed  Google Scholar 

  • Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics, 31, 166–169.

    Article  CAS  PubMed  Google Scholar 

  • Balabanova, L., Slepchenko, L., Son, O., & Tekutyeva, L. (2018). Biotechnology potential of marine fungi degrading plant and algae polymeric substrates. Frontiers in Microbiology, 9, 1527.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bian, J., Zhang, H., Meng, S., & Liu, Y. (2018). Chemotaxis of Caenorhabditis elegans toward volatile organic compounds from Stropharia rugosoannulata induced by amino acids. Journal of Nematology, 50, 3–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H., & Weber, T. (2019). antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Research, 47, W81–W87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchfink, B., Reuter, K., & Drost, H. (2021). Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature Methods, 18, 366–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellet-Rovira, F., Lucas, D., Villagrasa, M., Rodríguez-Mozaz, S., Barceló, D., & Sarrà, M. (2018). Stropharia rugosoannulata and Gymnopilus luteofolius : Promising fungal species for pharmaceutical biodegradation in contaminated water. Journal of Environmental Management, 207, 396–404.

    Article  CAS  PubMed  Google Scholar 

  • Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–552.

    Article  CAS  PubMed  Google Scholar 

  • Chan, P. P., Lin, B. Y., Mak, A. J., & Lowe, T. M. (2021). tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Research, 49, 9077–9096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Gong, Y., Cai, Y., Liu, W., Zhou, Y., Xiao, Y., Xu, Z., Liu, Y., Lei, X., Wang, G., et al. (2016). Genome sequence of the edible cultivated mushroom Lentinula edodes (shiitake) reveals insights into lignocellulose degradation. PLoS One, 11, e0160336.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Nie, F., Xie, S., Zheng, Y., Dai, Q., Bray, T., Wang, Y., Xing, J., Huang, Z., Wang, D., et al. (2021b). Efficient assembly of nanopore reads via highly accurate and intact error correction. Nature Communications, 12, 60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S., Su, L., Chen, J., & Wu, J. (2013). Cutinase: Characteristics, preparation, and application. Biotechnology Advances, 31, 1754–1767.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Zhang, L., Sun, P., Hu, W., Wang, R., Zhang, M., Wei, Y., Wang, H., Hu, J., & Xiong, Z. (2021a). Genetic diversity and cultivation characteristics of the main cultivars of Stropharia rugosoannulata in China. Mycosystema, 40, 3081–3095.

    Google Scholar 

  • Choi, J., Kim, K. T., Jeon, J., & Lee, Y. H. (2013). Fungal plant cell wall-degrading enzyme database: A platform for comparative and evolutionary genomics in fungi and Oomycetes. BMC Genomics, 14, S7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa, F. F. (2010). Non-coding RNAs: Meet thy masters. BioEssays, 32, 599–608.

    Article  CAS  PubMed  Google Scholar 

  • Cunha Zied, D., Sánchez, J. E., Noble, R., & Pardo-Giménez, A. (2020). Use of spent mushroom substrate in new mushroom crops to promote the transition towards a circular economy. Agronomy, 10, 1239.

    Article  Google Scholar 

  • De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics, 34, 2666–2669.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Oliveira, J. B., Pereira, P. R. C., Dos Santos, V. S., Ferreira, J. M., & Dutra, J. C. V. (2020). Stropharia. Beneficial Microbes in Agro-Ecology, 38, 749–755.

    Article  Google Scholar 

  • Eddy, S. R. (2009). A new generation of homology search tools based on probabilistic inference. Genome Informatics, 23, 205–211.

    PubMed  Google Scholar 

  • Emms, D. M., & Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology, 20, 238.

    Article  PubMed  PubMed Central  Google Scholar 

  • Floudas, D., Bentzer, J., Ahrén, D., Johansson, T., Persson, P., & Tunlid, A. (2020). Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi. ISME Journal, 14, 2046–2059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godio, R. P., & Martín, J. F. (2009). Modified oxidosqualene cyclases in the formation of bioactive secondary metabolites: Biosynthesis of the antitumor clavaric acid. Fungal Genetics and Biology, 46, 232–242.

    Article  CAS  PubMed  Google Scholar 

  • Gressler, M., Löhr, N. A., Schäfer, T., Lawrinowitz, S., Seibold, P. S., & Hoffmeister, D. (2021). Mind the mushroom: Natural product biosynthetic genes and enzymes of Basidiomycota. Natural Products Reports, 38, 702–722.

    Article  CAS  Google Scholar 

  • Hao, H., Zhang, J., Wu, S., Bai, J., Zhuo, X., Zhang, J., Kuai, B., & Chen, H. (2022). Transcriptomic analysis of Stropharia rugosoannulata reveals carbohydrate metabolism and cold resistance mechanisms under low-temperature stress. AMB Express, 12, 56–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, J., Fan, J., Sun, Z., & Liu, S. (2020). NextPolish: A fast and efficient genome polishing tool for long-read assembly. Bioinformatics, 36, 2253–2255.

    Article  CAS  PubMed  Google Scholar 

  • Jin, J., Yu, W., Yang, J., Song, Y., DePamphilis, C. W., Yi, T., & Li, D. (2020). GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21, 241.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., et al. (2014). InterProScan 5: Genome-scale protein function classification. Bioinformatics, 30, 1236–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurka, J. (1998). Repeats in genomic DNA: Mining and meaning. Current Opinion in Structural Biology, 8, 333–337.

    Article  CAS  PubMed  Google Scholar 

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kameshwar, A. K. S., Ramos, L. P., & Qin, W. (2019). CAZymes-based ranking of fungi (CBRF): An interactive web database for identifying fungi with extrinsic plant biomass degrading abilities. Bioresources and Bioprocessing, 6, 51.

    Article  Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37, 907–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Wu, S., Ma, X., Chen, W., Zhang, J., Duan, S., Gao, Y., Kui, L., Huang, W., Wu, P., et al. (2018). The genome sequences of 90 mushrooms. Science and Reports, 8, 9982.

    Article  Google Scholar 

  • Li, S., Zhao, S., Hu, C., Mao, C., Guo, L., Yu, H., & Yu, H. (2022). Whole genome sequence of an edible mushroom Stropharia rugosoannulata (Daqiugaigu). Journal of Fungi, 8, 99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Kim, J. I., Cusumano, J. C., Chapple, C., Venugopalan, N., Fischetti, R. F., & Makowski, L. (2016). The impact of alterations in lignin deposition on cellulose organization of the plant cell wall. Biotechnology for Biofuels, 9, 126.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Huang, L., Hu, H., Cai, M., Liang, X., Li, X., Zhang, Z., Xie, Y., Xiao, C., Chen, S., et al. (2021). Whole-genome assembly of Ganoderma leucocontextum (Ganodermataceae, Fungi) discovered from the Tibetan Plateau of China. G3: Genes, Genomes, Genetics, 11, jkab337.

    Article  CAS  PubMed  Google Scholar 

  • Luo, H., Li, X., Li, G., Pan, Y., & Zhang, K. (2006). Acanthocytes of Stropharia rugosoannulata function as a nematode-attacking device. Applied and Environmental Microbiology, 72, 2982–2987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min, B., Grigoriev, I. V., & Choi, I. (2017). FunGAP: Fungal genome annotation pipeline using evidence-based gene model evaluation. Bioinformatics, 33, 2936–2937.

    Article  CAS  PubMed  Google Scholar 

  • Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozdnyakova, N., Schlosser, D., Dubrovskaya, E., Balandina, S., Sigida, E., Grinev, V., & Turkovskaya, O. (2018). The degradative activity and adaptation potential of the litter-decomposing fungus Stropharia rugosoannulata. World Journal of Microbiology and Biotechnology, 34, 1–14.

    Article  CAS  Google Scholar 

  • Ranallo-Benavidez, T. R., Jaron, K. S., & Schatz, M. C. (2020). GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nature Communications, 11, 1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, J., Wang, Q., Zuo, J., & Jiang, S. (2021). Study of thermotolerant mechanism of Stropharia rugosoannulata under high temperature stress based on the transcriptome sequencing. Mycoscience, 62, 95–105.

    Article  Google Scholar 

  • Riley, R., Salamov, A. A., Brown, D. W., Nagy, L. G., Floudas, D., Held, B. W., Levasseur, A., Lombard, V., Morin, E., Otillar, R., et al. (2014). Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences, 111, 9923–9928.

    Article  CAS  Google Scholar 

  • Royse, D. J., Baars, J., & Tan, Q. (2017). Current overview of mushroom production in the world. Edible and Medicinal Mushrooms: Technology and Applications, 2, 5–13.

    Article  Google Scholar 

  • Shang, J., Hou, D., Li, Y., Zhou, C., Guo, T., Tang, L., Mao, W., Chen, Q., Bao, D., & Yang, R. (2020). Analyses of mating systems in Stropharia rugosoannulata based on genomic data. Mycosystema, 39, 1152–1161.

    Google Scholar 

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31, 3210–3212.

    Article  PubMed  Google Scholar 

  • Sonnhammer, E. L., Von Heijne, G., & Krogh, A. (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. ISMB, 6, 175–182.

    CAS  PubMed  Google Scholar 

  • Strasser, K., McDonnell, E., Nyaga, C., Wu, M., Wu, S., Almeida, H., Meurs, M., Kosseim, L., Powlowski, J., Butler, G., et al. (2015). mycoCLAP, the database for characterized lignocellulose-active proteins of fungal origin: resource and text mining curation support. Database, 2015, bav008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, R., Sun, X. F., Wang, S. Q., Zhu, W., & Wang, X. Y. (2002). Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood. Industrial Crops and Products, 15, 179–188.

    Article  CAS  Google Scholar 

  • Suzuki, T., Ono, A., Choi, J., Wu, J., Kawagishi, H., & Dohra, H. (2019). The complete mitochondrial genome sequence of the edible mushroom Stropharia rugosoannulata (Strophariaceae, Basidiomycota). Mitochondrial DNA B, 4, 570–572.

    Article  Google Scholar 

  • Wang, Y., Tang, H., DeBarry, J. D., Tan, X., Li, J., Wang, X., Lee, T. H., Jin, H., Marler, B., Guo, H., et al. (2012). MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40, e49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, L., Jing, B. N., Li, X., Hou, Y. Y., Xie, X. Y., Wang, Z. Y., Liu, Y. Q., Zhou, Y., Chang, X., & Wang, W. (2021). Evaluation of nutritional ingredients, biologically active materials, and pharmacological activities of Stropharia rugosoannulata grown under the bamboo forest and in the greenhouse. Journal of Food Quality, 2021, 5478227.

    Article  Google Scholar 

  • Winquist, E., Valentin, L., Moilanen, U., Leisola, M., Hatakka, A., Tuomela, M., & Steffen, K. T. (2009). Development of a fungal pre-treatment process for reduction of organic matter in contaminated soil. Journal of Chemical Technology and Biotechnology, 84, 845–850.

    Article  CAS  Google Scholar 

  • Wu, J., Fushimi, K., Tokuyama, S., Ohno, M., Miwa, T., Koyama, T., Yazawa, K., Nagai, K., Matsumoto, T., Hirai, H., et al. (2011). Functional-food constituents in the fruiting bodies of Stropharia rugosoannulata. Bioscience, Biotechnology, and Biochemistry, 75, 1631–1634.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Q. X., Huang, M. X., Sun, P., Cheng, S. X., Zhang, Q., & Dai, H. (2020). Steroids, fatty acids and ceramide from the mushroom Stropharia rugosoannulata Farlow apud Murrill. Biochemical Systematics and Ecology, 88, 103963.

    Article  CAS  Google Scholar 

  • Yan, P., Jiang, J., & Cui, W. (2004). Characterization of protoplasts prepared from the edible fungus, Stropharia rugoso-annulata. World Journal of Microbiology and Biotechnology, 20, 173–177.

    Article  CAS  Google Scholar 

  • Yan, P., & Jiang, J. (2005). Preliminary research of the RAPD molecular marker-assisted breeding of the edible basidiomycete Stropharia rugoso-annulata. World Journal of Microbiology and Biotechnology, 21, 559–563.

    Article  CAS  Google Scholar 

  • Yang, Y., Li, C., Ni, S., Zhang, H., & Dong, C. (2021). Ultrastructure and development of acanthocytes, specialized cells in Stropharia rugosoannulata, revealed by scanning electron microscopy (SEM) and cryo-SEM. Mycologia, 113, 65–77.

    Article  CAS  PubMed  Google Scholar 

  • Yang, R., Li, Y., Tang, L., Li, C., & Bao, D. (2017). Genome-wide comparison of lignocellulose degradation enzymes in Agaricales. Mycosystema, 36, 705–717.

    Google Scholar 

  • Yang, Y., Meng, G., Ni, S., Zhang, H., & Dong, C. (2022). Genomic analysis of Stropharia rugosoannulata reveals its nutritional strategy and application potential in bioremediation. Journal of Fungi, 8, 162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., Busk, P. K., Xu, Y., & Yin, Y. (2018). dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 46, W95–W101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, J., & Chang, S. T. (1993). Monokaryotization by protoplasting heterothallic species of edible mushrooms. World Journal of Microbiology and Biotechnology, 9, 538–543.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, X., Li, Q., Zhao, J., Tang, K., Lin, J., & Yin, Y. (2007). Comparison of rapid DNA extraction methods applied to PCR identification of medicinal mushroom Ganoderma spp. Preparative Biochemistry & Biotechnology, 37, 369–380.

    Article  CAS  Google Scholar 

  • Zouhar, M., Douda, O., Nováková, J., Doudová, E., Mazáková, J., Wenzlová, J., Ryšánek, P., & Renčo, M. (2013). First report about the trapping activity of Stropharia rugosoannulata acanthocytes for Northern Root Knot Nematode. Helminthologia, 50, 127–131.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Innovation Project of Wuhan Academy of Agricultural Sciences (Grant No. XKCX202201-6), Key R & D Project of Hubei Province (Grant No. 2021BBA254), and Hubei Agriculture Research System of Edible Fungi (Grant No. HBHZDZB-2021-023). The authors also thank Dr. Lianfu Chen (http://www.chenlianfu.com/) for sharing his bioinformatic pipelines and scripts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolong Ma or Yan Zhou.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 11 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Ma, X., Zhou, Y. et al. Genome Sequencing Highlights the Plant Cell Wall Degrading Capacity of Edible Mushroom Stropharia rugosoannulata. J Microbiol. 61, 83–93 (2023). https://doi.org/10.1007/s12275-022-00003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-00003-7

Keywords

Navigation