Skip to main content
Log in

Roles of eIF4E-binding protein Caf20 in Ste12 translation and P-body formation in yeast

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Translation initiation factor eIF4E forms eIF4E-eIF4G complex at the 5’ cap of mRNA. This interaction can be inhibited by the family of 4E-binding proteins (4E-BP). In yeast Saccharomyces cerevisiae, two 4E-BPs, Caf20 and Eap1, compete with eIF4G for binding to eIF4E via the shared conserved interaction motif. In order to investigate the roles of Caf20 in gene-specific translational regulation and the formation of mRNA granules (P-bodies), we introduced substitution mutations, caf20-Y4A or caf20-L9A, in the eIF4E-binding motif for CAF20. Overexpression of the wild-type CAF20 showed an increased protein level of Ste12 transcription factor as well as highly developed P-body formation. However, 4E-binding site mutations of CAF20 led to a reduced number of P-body foci and decreased levels of Ste12 protein. The phenotypes of the caf20 deletion mutation were also analyzed, and we suggest that Caf20 plays a critical role in Ste12 protein expression and in the control of P-body formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altmann, M., Schmitz, N., Berset, C., and Trachsel, H. 1997. A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E. EMBO J. 16, 1114–1121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blewett, N.H. and Goldstrohm, A.C. 2012. A eukaryotic translation initiation factor 4E-binding protein promotes mRNA decapping and is required for PUF repression. Mol. Cell. Biol. 32, 4181–4194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carroll, J.S., Munchel, S.E., and Weis, K. 2011. The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics. J. Cell. Biol. 194, 527–537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castelli, L.M., Talavera, D., Kershaw, C.J., Mohammad-Qureshi, S.S., Costello, J.L., Rowe, W., Sims, P.F., Grant, C.M., Hubbard, S.J., Ashe, M.P., et al. 2015. The 4E-BP Caf20p mediates both eIF4E-dependent and independent repression of translation. PLoS Genet. 11, e1005233.

    Article  CAS  Google Scholar 

  • Christianson, T.W., Sikorski, R.S., Dante, M., Shero, J.H., and Hieter, P. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119–122.

    Article  PubMed  CAS  Google Scholar 

  • Coller, J. and Parker, R. 2005. General translational repression by activators of mRNA decapping. Cell 122, 875–886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cridge, A.G., Castelli, L.M., Smirnova, J.B., Selley, J.N., Rowe, W., Hubbard, S.J., McCarthy, J.E., Ashe, M.P., Grant, C.M., and Pavitt, G.D. 2010. Identifying eIF4E-binding protein translationallycontrolled transcripts reveals links to mRNAs bound by specific PUF proteins. Nucleic Acids Res. 38, 8039–8050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franks, T.M. and Lykke-Andersen, J. 2008. The control of mRNA decapping and P-body formation. Mol. Cell 32, 605–615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hershey, J.W., Sonenberg, N., and Mathews, M.B. 2012. Principles of translational control: an overview. Cold Spring Harb. Perspect. Biol. 4, a011528.

    Google Scholar 

  • Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., and O’Shea, E.K. 2003. Global analysis of protein localization in budding yeast. Nature 425, 686–691.

    Article  PubMed  CAS  Google Scholar 

  • Ibrahimo, S., Holmes, L.E., and Ashe, M.P. 2006. Regulation of translation initiation by the yeast eIF4E binding proteins is required for the pseudohyphal response. Yeast 23, 1075–1088.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, R.J., Hellen, C.U., and Pestova, T.V. 2010. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell. Biol. 11, 113–127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung, D., Ahn, J., Rhee, B., and Kim, J. 2017. Mutational analysis of the RNA helicase Dhh1 in Ste12 expression and yeast mating. J. Microbiol. 55, 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Ka, M., Park, Y.U., and Kim, J. 2008. The DEAD-box RNA helicase, Dhh1, functions in mating by regulating Ste12 translation in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 367, 680–686.

    Article  PubMed  CAS  Google Scholar 

  • Minshall, N., Kress, M., Weil, D., and Standart, N. 2009. Role of p54 RNA helicase activity and its C-terminal domain in translational repression, P-body localization and assembly. Mol. Biol. Cell 20, 2464–2472.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh, J.Y. and Kim, J. 1999. ATP hydrolysis activity of the DEAD box protein Rok1p is required for in vivo ROK1 function. Nucleic Acids Res. 27, 2753–2759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park, Y.U., Hur, H., Ka, M., and Kim, J. 2006. Identification of translational regulation target genes during filamentous growth in Saccharomyces cerevisiae: regulatory role of Caf20 and Dhh1. Eukaryot. Cell 5, 2120–2127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pestova, T.V., Kolupaeva, V.G., Lomakin, I.B., Pilipenko, E.V., Shatsky, I.N., Agol, V.I., and Hellen, C.U. 2001. Molecular mechanisms of translation initiation in eukaryotes. Proc. Natl. Acad. Sci. USA 98, 7029–7036.

    Article  PubMed  CAS  Google Scholar 

  • Richter, J.D. and Sonenberg, N. 2005. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433, 477–480.

    Article  PubMed  CAS  Google Scholar 

  • Sheth, U. and Parker, R. 2003. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805–808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sonenberg, N. and Gingras, A.C. 1998. The mRNA cap-binding protein eIF4E and control of cell growth. Curr. Opin. Cell Biol. 10, 268–275.

    Article  PubMed  CAS  Google Scholar 

  • Sweet, T., Kovalak, C., and Coller, J. 2012. The DEAD-box protein Dhh1 promotes decapping by slowing ribosome movement. PLoS Biol. 10, e1001342.

    Article  CAS  Google Scholar 

  • Teixeira, D., Sheth, U., Valencia-Sanchez, M.A., Brengues, M., and Parker, R. 2005. Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11, 371–382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinmi Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, K., Lee, YS., Jung, D. et al. Roles of eIF4E-binding protein Caf20 in Ste12 translation and P-body formation in yeast. J Microbiol. 56, 744–747 (2018). https://doi.org/10.1007/s12275-018-8230-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-8230-0

Keywords

Navigation