Skip to main content
Log in

Paenibacillus albilobatus sp. nov., isolated from acidic soil on Jeju Island

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A rod-shaped, white color colony with lobate architectures, strain h2T was isolated from a moderately acidic soil on Jeju Island, Republic of Korea. Comparative analysis of the 16S rRNA gene sequence showed that the strain h2T is closely related to Paenibacillus relictisesami DSM 25385T (97.4%, 16S rRNA gene sequence similarity), Paenibacillus azoreducens KACC 11244T (97.2%), and Paenibacillus cookii LMG 18419T (97.0%). DNA-DNA hybridization indicated that the strain h2T has relatively low levels of DNA-DNA relatedness with respect to P. relictisesami DSM 25385T (10.2%) and P. azoreducens KACC 11244T (13.7%). Additionally, the genomic DNA G + C content of h2T is 51.5 mol%. The isolated strain grew at pH 4.0–9.0 (optimum, pH 6.0–7.0) and 0–5% (w/v) NaCl (optimum, 0%) and a temperature of 15–45°C (optimum 35°C). The quinones in the strain are MK-6 and MK-7, and the predominant fatty acid is C15:0 anteiso (32.1%) followed by C17:0 anteiso (26.5%), and C16:0 iso (21.0%). Based on its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain h2T is proposed as a novel species in the genus Paenibacillus, for which the name Paenibacillus albilobatus sp. nov. is proposed (= KCCM 43269T = JCM 32395T = LMG 30408T). The type strain of Paenibacillus albilobatus is h2T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ash, C., Farrow, J.A., Dorsch, M., Stackebrandt, E., and Collins, M.D. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41, 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Ash, C., Priest, F.G., and Collins, M.D. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253–260.

    Article  PubMed  CAS  Google Scholar 

  • Bae, J.Y., Kim, K.Y., Kim, J.H., Lee, K., Cho, J.C., and Cha, C.J. 2010. Paenibacillus aestuarii sp. nov., isolated from an estuarine wetland. Int. J. Syst. Evol. Microbiol. 60, 644–647.

    Article  PubMed  CAS  Google Scholar 

  • Berge, O., Guinebretiere, M.H., Achouak, W., Normand, P., and Heulin, T. 2002. Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int. J. Syst. Evol. Microbiol. 52, 607–616.

    Article  PubMed  CAS  Google Scholar 

  • Ezaki, T., Adnan, S., and Miyake, M. 1990. [Quantitative microdilution plate hybridization to determine genetic relatedness among bacterial strains]. Nihon Saikingaku Zasshi 45, 851–857.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, M. and Thatte, B. 2010. Revisiting an equivalence between maximum parsimony and maximum likelihood methods in phylogenetics. Bull. Math. Biol. 72, 208–220.

    Article  PubMed  Google Scholar 

  • González, J.M. and Saiz-Jimenez, C. 2002. A fluorimetric method for the estimation of G + C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.

    Article  PubMed  Google Scholar 

  • Hu, H.Y., Fujie, K., and Urano, K. 1999. Development of a novel solid phase extraction method for the analysis of bacterial quinones in activated sludge with a higher reliability. J. Biosci. Bioeng. 87, 378–382.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Koh, H.W., Hong, H., Min, U.G., Kang, M.S., Kim, S.G., Na, J.G., Rhee, S.K., and Park, S.J. 2015a. Rhodanobacter aciditrophus sp. nov., an acidophilic bacterium isolated from mine wastewater. Int. J. Syst. Evol. Microbiol. 65, 4574–4579.

    Article  PubMed  CAS  Google Scholar 

  • Koh, H.W., Rani, S., Kim, S.J., Moon, E., Nam, S.W., Rhee, S.K., and Park, S.J. 2017. Halomonas aestuarii sp. nov., a moderately halophilic bacterium isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 67, 4298–4303.

    Article  PubMed  Google Scholar 

  • Koh, H.W., Song, H.S., Song, U., Yim, K.J., Roh, S.W., and Park, S.J. 2015b. Halolamina sediminis sp. nov., an extremely halophilic archaeon isolated from solar salt. Int. J. Syst. Evol. Microbiol. 65, 2479–2484.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Logan, N.A., De Clerck, E., Lebbe, L., Verhelst, A., Goris, J., Forsyth, G., Rodriguez-Diaz, M., Heyndrickx, M., and De Vos, P. 2004. Paenibacillus cineris sp. nov. and Paenibacillus cookii sp. nov., from Antarctic volcanic soils and a gelatin-processing plant. Int. J. Syst. Evol. Microbiol. 54, 1071–1076.

    Article  PubMed  CAS  Google Scholar 

  • Meehan, C., Bjourson, A.J., and McMullan, G. 2001. Paenibacillus azoreducens sp. nov., a synthetic azo dye decolorizing bacterium from industrial wastewater. Int. J. Syst. Evol. Microbiol. 51, 1681–1685.

    Article  PubMed  CAS  Google Scholar 

  • Menendez, E., Flores-Felix, J.D., Mulas, R., Andres, F.G., Fernandez-Pascual, M., Peix, A., and Velazquez, E. 2017. Paenibacillus tritici sp. nov., isolated from wheat roots. Int. J. Syst. Evol. Microbiol. 67, 2312–2316.

    Article  PubMed  Google Scholar 

  • Morales, P., Sendra, J.M., and Perez-Gonzalez, J.A. 1995. Purification and characterization of an arabinofuranosidase from Bacillus polymyxa expressed in Bacillus subtilis. Appl. Microbiol. Biotechnol. 44, 112–117.

    Article  PubMed  CAS  Google Scholar 

  • Ottow, J.C. 1972. Pectinolytic-, ureolytic-, and lecithinolytic activity as a diagnostic aid in the identification of species classified in the genus Bacillus Cohn. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. 127, 301–312.

    PubMed  CAS  Google Scholar 

  • Park, S.J., Cha, I.T., Kim, S.J., Shin, K.S., Hong, Y., Roh, D.H., and Rhee, S.K. 2012. Salinisphaera orenii sp. nov., isolated from a solar saltern. Int. J. Syst. Evol. Microbiol. 62, 1877–1883.

    Article  PubMed  CAS  Google Scholar 

  • Rani, S., Koh, H.W., Kim, H., Rhee, S.K., and Park, S.J. 2017. Marinobacter salinus sp. nov., a moderately halophilic bacterium isolated from a tidal flat environment. Int. J. Syst. Evol. Microbiol. 67, 205–211.

    Article  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Shida, O., Takagi, H., Kadowaki, K., Nakamura, L.K., and Komagata, K. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 47, 289–298.

    Article  PubMed  CAS  Google Scholar 

  • Shimoyama, T., Johari, N.B., Tsuruya, A., Nair, A., and Nakayama, T. 2014. Paenibacillus relictisesami sp. nov., isolated from sesame oil cake. Int. J. Syst. Evol. Microbiol. 64, 1534–1539.

    Article  PubMed  CAS  Google Scholar 

  • Tang, Q.Y., Yang, N., Wang, J., Xie, Y.Q., Ren, B., Zhou, Y.G., Gu, M.Y., Mao, J., Li, W.J., Shi, Y.H., et al. 2011. Paenibacillus algorifonticola sp. nov., isolated from a cold spring. Int. J. Syst. Evol. Microbiol. 61, 2167–2172.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, X.M., Ma, S., Yang, S.Y., Peng, R., Zheng, Y., and Yang, H. 2016. Paenibacillus nasutitermitis sp. nov., isolated from a termite gut. Int. J. Syst. Evol. Microbiol. 66, 901–905.

    Article  PubMed  CAS  Google Scholar 

  • Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie, J.B., Du, Z., Bai, L., Tian, C., Zhang, Y., Xie, J.Y., Wang, T., Liu, X., Chen, X., Cheng, Q., et al. 2014. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. PLoS Genet. 10, e1004231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yarza, P., Yilmaz, P., Pruesse, E., Glockner, F.O., Ludwig, W., Schleifer, K.H., Whitman, W.B., Euzeby, J., Amann, R., and Rossello-Mora, R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon, J.H., Kang, S.J., Yeo, S.H., and Oh, T.K. 2005. Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. Int. J. Syst. Evol. Microbiol. 55, 2339–2344.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Je Park.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain h2T is MF565846.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JW., Kim, YE., Kang, MS. et al. Paenibacillus albilobatus sp. nov., isolated from acidic soil on Jeju Island. J Microbiol. 56, 393–398 (2018). https://doi.org/10.1007/s12275-018-8158-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-8158-4

Keywords

Navigation