Skip to main content
Log in

Electron microscopic observations of prokaryotic surface appendages

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Prokaryotic microbes possess a variety of appendages on their cell surfaces. The most commonly known surface appendages of bacteria include flagella, pili, curli, and spinae. Although archaea have archaella (archaeal flagella) and various types of pili that resemble those in bacteria, cannulae, and hami are unique to archaea. Typically involved in cell motility, flagella, the thickest appendages, are 20–26 nm and 10–14 nm wide in bacteria and archaea, respectively. Bacterial and archaeal pili are distinguished by their thin, short, hair-like structures. Curli appear as coiled and aggregative thin fibers, whereas spinae are tubular structures 50–70 nm in diameter in bacteria. Cannulae are characterized by ∼25 nm-wide tubules that enter periplasmic spaces and connect neighboring archaeal cells. Hami are 1–3 μm in length and similar to barbed grappling hooks for attachment to bacteria. Recent advances in specimen preparation methods and image processing techniques have made cryo-transmission electron microscopy an essential tool for in situ structural analysis of microbes and their extracellular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers, S.V. and Meyer, B.H. 2011. The archaeal cell envelope. Nat. Rev. Microbiol. 9, 414–426.

    Article  CAS  PubMed  Google Scholar 

  • Balaban, M. and Hendrixson, D.R. 2011. Polar flagellar biosynthesis and a regular of flagellar number influence spatial parameters of cell division in Campylobacter jejuni. PLoS Pathog. 7, e1002420.

    Article  Google Scholar 

  • Bayer, M.E. and Easterbrook, K. 1991. Tubular spinae are long-distance connectors between bacteria. J. Gen. Microbiol. 137, 1081–1086.

    Article  CAS  PubMed  Google Scholar 

  • Bernadac, A., Wu, L.F., Santini, C.L., Vidaud, C., Sturgis, J.N., Menguy, N., Bergam, P., Nicoletti, C., and Xiao, T. 2012. Structural properties of the tubular appendage spinae from marine bacterium Roseobacter sp. strain YSCB. Sci. Rep. 2, 950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry, J.L. and Perlicic, V. 2015. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol. Rev. 39, 134–154.

    Article  CAS  PubMed  Google Scholar 

  • Briegel, A., Oikonomou, C.M., Chang, Y.W., Kjær, A., Huang, A.N., Kim, K.W., Ghosal, D., Nguyen, H.H., Kenney, D., Loo, R.R.O., et al. 2017. Morphology of the archaellar motor and associated cytoplasmic cone in Thermococcus kodakaraensis. EMBO Rep. 18, 1660–1670.

    Article  CAS  PubMed  Google Scholar 

  • Brooke, J.S., Thompson, J.B., Beveridge, T.J., and Koval, S.F. 1992. Frequency and structure of spinae on Chlorobium spp. Arch. Microbiol. 157, 319–322.

    Article  Google Scholar 

  • Chang, Y.W., Rettberg, L.A., Treuner-Lange, A., Iwasa, J., Søgaard-Andersen, L., and Jensen, G.J. 2016. Architecture of the type IVa pilus machine. Science 351, aad2001.

    Article  Google Scholar 

  • Chimileski, S. and Papke, R.T. 2015. Getting a hold on archaeal type IV pili: an expanding repertoire of cellular appendages implicates complex regulation and diverse functions. Front. Microbiol. 6, 362.

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa, T.R.D., Ilangovan, A., Ukleja, M., Redzej, A., Santini, J.M., Smith, T.K., Egelman, E.H., and Waksman, G. 2016. Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex. Cell 166, 1436–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daum, B., Vonck, J., Bellack, A., Chaudhury, P., Reichelt, R., Albers, S.V., Rachel, R., and Kühlbrandt, W. 2017. Structure and in situ organization of the Pyrococcus furiosus archaellum machinery. eLife 6, e27470.

    Google Scholar 

  • Dohnalkova, A.C., Marshall, M.J., Arey, B.W., Williams, K.H., Buck, E.C., and Fredrickson, J.K. 2011. Imaging hydrated microbial extracellular polymers: comparative analysis by electron microscopy. Appl. Environ. Microbiol. 77, 1254–1262.

    Article  CAS  PubMed  Google Scholar 

  • Dubey, G.P. and Ben-Yehuda, S. 2011. Intercellular nanotubes mediate bacterial communication. Cell 144, 590–600.

    Article  CAS  PubMed  Google Scholar 

  • Dueholm, M.S., Albertsen, M., Otzen, D., and Nielsen, P.H. 2012. Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS One 7, e51274.

    Article  Google Scholar 

  • Easterbrook, K.B. and Coombs, R.W. 1976. Spinin: the subunit of bacterial spinae. Can. J. Microbiol. 22, 438–440.

    Article  CAS  PubMed  Google Scholar 

  • Epstein, E.A., Reizian, M.A., and Chapman, M.R. 2009. Spatial clustering of the curlin secretion lipoprotein requires curli fiber assembly. J. Bacteriol. 191, 608–615.

    Article  CAS  PubMed  Google Scholar 

  • Erhardt, M., Namba, K., and Hughes, K.T. 2010. Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb. Perspect. Biol. 2010, a000299.

    Google Scholar 

  • Evans, M.L. and Chapman, M.R. 2014. Curli biogenesis: order out of disorder. Biochim. Biophys. Acta. 1843, 1551–1558.

    Article  CAS  PubMed  Google Scholar 

  • Fröls, S., Ajon, M., Wagner, M., Teichmann, D., Zolghadr, B., Folea, M., Boekema, E.J., Driessen, A.J.M., Schleper, C., and Albers, S.V. 2008. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol. Microbiol. 70, 938–952.

    Article  PubMed  Google Scholar 

  • Fronzes, R., Remaut, H., and Waksman, G. 2008. Architecture and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J. 27, 2271–2280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gold, V.A.M., Salzer, R., Averhoff, B., and Kühlbrandt, W. 2015. Structure of a type IV pilus machinery in the open and closed state. eLife 4, e07380.

    Article  Google Scholar 

  • Haiko, J. and Westerlund-Wikström, B. 2013. The role of the bacterial flagellum in adhesion and virulence. Biology 2, 1242–1267.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayat, M.A. 2000. Principles and techniques of electron microscopy: biological applications, pp. 543. 4th Ed. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Hospenthal, M.K., Costa, T.R.D., and Waksman, G. 2017. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat. Rev. Microbiol. 15, 365–379.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, K.T. 2017. Flagellum length control: how long is long enough? Curr. Biol. 27, 413–415.

    Article  Google Scholar 

  • Ishii, S., Koki, J., Unno, H., and Hori, K. 2004. Two morphological types of cell appendages on a strongly adhesive bacterium, Acinetobacter sp. strain Tol 5. Appl. Environ. Microbiol. 70, 5026–5029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarrell, K.F., Bayley, D.P., and Kostyukova, A.S. 1996. The archaeal flagellum: a unique motility structure. J. Bacteriol. 178, 5057–5064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarrell, K.F., Ding, Y., Nair, D.B., and Siu, S. 2013. Surface appendages of archaea: structure, function, genetics and assembly. Life 3, 86–117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarrell, K.F. and McBride, M.J. 2008. The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6, 466–476.

    Article  CAS  PubMed  Google Scholar 

  • Jezberová, J. and Komárkova, J. 2007. Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environ. Microbiol. 9, 1858–1862.

    Article  PubMed  Google Scholar 

  • Kim, K.W., Jung, W.K., and Park, Y.H. 2008. Comparison of prestain suspension liquids in the contrasting ability of neutralized potassium phosphotungstate for negative staining of bacteria. J. Microbiol. Biotechnol. 18, 1762–1767.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K.W., Lee, I.J., Hyun, J.W., Lee, Y.H., and Park, E.W. 2010. Different profiles of the negatively stained citrus canker bacterium Xanthomonas citri pv. citri depending on culture media and heavy metal stains. Plant Pathol. J. 26, 90–92.

    Article  Google Scholar 

  • Kline, K.A., Dodson, K.W., Caparon, M.G., and Hultgren, S.J. 2010. A tale of two pili: assembly and function of pili in bacteria. Trends Microbiol. 18, 224–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kühn, M.J., Schmidt, F.K., Eckhardt, B., and Thormann, K.M. 2017. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps. Proc. Natl. Acad. Sci. USA 114, 6340–6345.

    Article  PubMed  PubMed Central  Google Scholar 

  • Melville, S. and Craig, L. 2013. Type IV pili in Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 77, 323–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merino, S., Shaw, J.G., and Tomás, J.M. 2006. Bacterial lateral flagella: an inducible flagella system. FEMS Microbiol. Lett. 263, 127–135.

    Article  CAS  PubMed  Google Scholar 

  • Moissl, C., Rachel, R., Briegel, A., Engelhardt, H., and Huber, R. 2005. The unique structure of archaeal ‘hami’, highly complex cell appendages with nano-grappling hooks. Mol. Microbiol. 56, 361–370.

    Article  CAS  PubMed  Google Scholar 

  • Ng, S.Y.M., Zolghadr, B., Driessen, A.J.M., Albers, S.V., and Jarrell, K.F. 2008. Cell surface structures of archaea. J. Bacteriol. 190, 6039–6047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nickell, S., Hegerl, R., Baumeister, W., and Rachel, R. 2003. Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J. Struct. Biol. 141, 34–42.

    Article  PubMed  Google Scholar 

  • Oikonomou, C.M. and Jensen, G.J. 2017. Cellular electron cryotomography: toward structural biology in situ. Annu. Rev. Biochem. 86, 873–896.

    Article  CAS  PubMed  Google Scholar 

  • Olsén, A., Jonsson, A., and Normark, S. 1989. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338, 652–655.

    Article  PubMed  Google Scholar 

  • Perras, A.K., Wanner, G., Klingl, A., Mora, M., Auerbach, A.K., Heinz, V., Probst, A.J., Huber, H., Rachel, R., Meck, S., et al. 2014. Grappling archaea: ultrastructural analyses of an uncultivated, cold-loving archaeon, and its biofilm. Front. Microbiol. 5, 397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pohlschroder, M. and Esquivel, R.N. 2015. Archaeal type IV pili and their involvement in biofilm formation. Front. Microbiol. 6, 190.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poweleit, N., Ge, P., Nguyen, H.H., Loo, R.R.O., Gunsalus, R.P., and Zhou, Z.H. 2016. CryoEM structure of the Methanospirillum hungatei archaellum reveals structural features distinct from the bacterial flagellum and the type IV pilus. Nat. Microbiol. 2, 16222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieger, G., Rachel, R., Hermann, R., and Stetter, K.O. 1995. Ultrastructure of the hyperthermophilic archaeon Pyrodictium abyssi. J. Struct. Biol. 115, 78–87.

    Article  Google Scholar 

  • Rossez, Y., Wolfson, E.B., Holmes, A., Gally, D.L., and Holden, N.J. 2015. Bacterial flagella: twist and stick, or dodge across the kingdoms. PLoS Pathog. 11, e1004483.

    Article  Google Scholar 

  • Serra, D.O., Richter, A.M., Klauck, G., Mika, F., and Hengge, R. 2013. Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. mBio 4, e00103–13.

    Article  Google Scholar 

  • Shaffer, C.L., Gaddy, J.A., Loh, J.T., Johnson, E.M., Hill, S., Hennig, E.E., McClain, M.S., McDonald, W.H., and Cover, T.L. 2011. Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog. 7, e1002237.

    Article  Google Scholar 

  • Shi, W. and Sun, H. 2002. Type IV pilus-dependent motility and its possible role in bacterial pathogenesis. Infect. Immun. 70, 1–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steadman, D., Lo, A., Waksman, G., and Remaut, H. 2014. Bacterial surface appendages as targets for novel antibacterial therapeutics. Future Microbiol. 9, 887–900.

    Article  CAS  PubMed  Google Scholar 

  • Thanassi, D.G., Bliska, J.B., and Christie, P.J. 2012. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol. Rev. 36, 1046–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, X., Norris, S.J., and Liu, J. 2014. Molecular architecture of the bacterial flagellar motor in cells. Biochemistry 53, 4323–4333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Woo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.W. Electron microscopic observations of prokaryotic surface appendages. J Microbiol. 55, 919–926 (2017). https://doi.org/10.1007/s12275-017-7369-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-7369-4

Keywords

Navigation