Skip to main content
Log in

Crystal structure of the inactive state of the receiver domain of Spo0A from Paenisporosarcina sp. TG-14, a psychrophilic bacterium isolated from an Antarctic glacier

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The two-component phosphorelay system is the most prevalent mechanism for sensing and transducing environmental signals in bacteria. Spore formation, which relies on the two-component phosphorelay system, enables the long-term survival of the glacial bacterium Paenisporosarcina sp. TG-14 in the extreme cold environment. Spo0A is a key response regulator of the phosphorelay system in the early stage of spore formation. The protein is composed of a regulatory N-terminal phospho-receiver domain and a DNA-binding C-terminal activator domain. We solved the three-dimensional structure of the unphosphorylated (inactive) form of the receiver domain of Spo0A (PaSpo0A-R) from Paenisporosarcina sp. TG-14. A structural comparison with phosphorylated (active form) Spo0A from Bacillus stearothermophilus (BsSpo0A) showed minor notable differences. A molecular dynamics study of a model of the active form and the crystal structures revealed significant differences in the α4 helix and the preceding loop region where phosphorylation occurs. Although an oligomerization study of PaSpo0A-R by analytical ultracentrifugation (AUC) has shown that the protein is in a monomeric state in solution, both crosslinking and crystal-packing analyses indicate the possibility of weak dimer formation by a previously undocumented mechanism. Collectively, these observations provide insight into the mechanism of phosphorylation-dependent activation unique to Spo0A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachhawat, P. and Stock, A.M. 2007. Crystal structures of the receiver domain of the response regulator PhoP from Escherichia coli in the absence and presence of the phosphoryl analog beryllofluoride. J. Bacteriol. 189, 5987–5995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baikalov, I., Schröder, I., Kaczor-Grzeskowiak, M., Grzeskowiak, K., Gunsalus, R.P., and Dickerson, R.E. 1996. Structure of the Escherichia coli response regulator NarL. Biochemistry 35, 11053–11061.

    Article  CAS  PubMed  Google Scholar 

  • Bent, C.J., Isaacs, N.W., Mitchell, T.J., and Riboldi-Tunnicliffe, A. 2004. Crystal structure of the response regulator 02 receiver domain, the essential YycF two-component system of Streptococcus pneumoniae in both complexed and native states. J. Bacteriol. 186, 2872–2879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burbulys, D., Trach, K.A., and Hoch, J.A. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64, 545–552.

    Article  CAS  PubMed  Google Scholar 

  • Casino, P., Rubio, V., and Marina, A. 2010. The mechanism of signal transduction by two-component systems. Curr. Opin. Struct. Biol. 20, 763–771.

    Article  CAS  PubMed  Google Scholar 

  • Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66, 12–21.

    Article  CAS  Google Scholar 

  • Christner, B.C., Mosley-Thompson, E., Thompson, L.G., Zagorodnov, V., Sandman, K., and Reeve, J.N. 2000. Recovery and identification of viable bacteria immured in glacial ice. Icarus 144, 479–485.

    Article  Google Scholar 

  • DeLano, W.L. 2002. The PyMOL molecular graphics system.

    Google Scholar 

  • Emsley, P. and Cowtan, K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D. Biol. Crystallogr. 60, 2126–2132.

    Article  Google Scholar 

  • Falke, J.J., Snyder, E.E., Thatcher, K.C., and Voertler, C.S. 1991. Quantitating and engineering the ion specificity of an EF-handlike calcium binding site. Biochemistry 30, 8690–8697.

    Article  CAS  PubMed  Google Scholar 

  • Fawcett, P., Eichenberger, P., Losick, R., and Youngman, P. 2000. The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 97, 8063–8068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández, I., Otero, L.H., Klinke, S., del Carmen Carrica, M., and Goldbaum, F.A. 2015. Snapshots of conformational changes shed light into the NtrX receiver domain signal transduction mechanism. J. Mol. Biol. 427, 3258–3272.

    Article  PubMed  Google Scholar 

  • Gouet, P., Fabry, B., Guillet, V., Birck, C., Mourey, L., Kahn, D., and Samama, J.P. 1999. Structural transitions in the FixJ receiver domain. Structure 7, 1517–1526.

    Article  CAS  PubMed  Google Scholar 

  • Grimsley, J.K., Tjalkens, R.B., Strauch, M.A., Bird, T.H., Spiegelman, G.B., Hostomsky, Z., Whiteley, J.M., and Hoch, J.A. 1994. Subunit composition and domain structure of the Spo0A sporulation transcription factor of Bacillus subtilis. J. Biol. Chem. 269, 16977–16982.

    CAS  PubMed  Google Scholar 

  • He, X., Wang, L., and Wang, S. 2016. Structural basis of DNA sequence recognition by the response regulator PhoP in Mycobacterium tuberculosis. Sci. Rep. 6, 24442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holm, L. and Rosenström, P. 2010. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ireton, K., Rudner, D.Z., Siranosian, K.J., and Grossman, A.D. 1993. Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. Genes Dev. 7, 283–294.

    Article  CAS  PubMed  Google Scholar 

  • Jacques, D.A., Streamer, M., Rowland, S.L., King, G.F., Guss, J.M., Trewhella, J., and Langley, D.B. 2009. Structure of the sporulation histidine kinase inhibitor Sda from Bacillus subtilis and insights into its solution state. Acta Crystallogr. Sect. D. Biol. Crystallogr. 65, 574–581.

    Article  CAS  Google Scholar 

  • Jiang, M., Shao, W., Perego, M., and Hoch, J.A. 2000. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38, 535–542.

    Article  CAS  PubMed  Google Scholar 

  • Koh, H.Y., Lee, S.G., Lee, J.H., Doyle, S., Christner, B.C., and Kim, H.J. 2012. Draft genome sequence of Paenisporosarcina sp. strain TG-14, a psychrophilic bacterium isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica. J. Bacteriol. 194, 6656–6657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDeaux, J.R. and Grossman, A.D. 1995. Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J. Bacteriol. 177, 166–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDeaux, J.R., Yu, N., and Grossman, A.D. 1995. Different roles for KinA, KinB, and KinC in the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 177, 861–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Tomchick, D.R., Brautigam, C.A., Machius, M., Kort, R., Hellingwerf, K.J., and Gardner, K.H. 2008. Changes at the KinA PAS-A dimerization interface influence histidine kinase function. Biochemistry 47, 4051–4064.

    Article  CAS  PubMed  Google Scholar 

  • Leonard, P.G., Golemi-Kotra, D., and Stock, A.M. 2013. Phosphorylation-dependent conformational changes and domain rearrangements in Staphylococcus aureus VraR activation. Proc. Natl. Acad. Sci. USA 110, 8525–8530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis, R.J., Brannigan, J.A., Muchová, K., Barák, I., and Wilkinson, A.J. 1999. Phosphorylated aspartate in the structure of a response regulator protein. J. Mol. Biol. 294, 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, R.J., Krzywda, S., Brannigan, J.A., Turkenburg, J.P., Muchová, K., Dodson, E.J., Barak, I., and Wilkinson, A.J. 2000a. The transactivation domain of the sporulation response regulator Spo0A revealed by X‐ray crystallography. Mol. Microbiol. 38, 198–212.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, R.J., Muchová, K., Brannigan, J.A., Barák, I., Leonard, G., and Wilkinson, A.J. 2000b. Domain swapping in the sporulation response regulator Spo0A. J. Mol. Biol. 297, 757–770.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, R.J., Scott, D.J., Brannigan, J.A., Ladds, J.C., Cervin, M.A., Spiegelman, G.B., Hoggett, J.G., Barák, I., and Wilkinson, A.J. 2002. Dimer formation and transcription activation in the sporulation response regulator Spo0A. J. Mol. Biol. 316, 235–245.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. and Eisenberg, D. 2002. 3D domain swapping: as domains continue to swap. Protein Sci. 11, 1285–1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukat, G.S., Stock, A.M., and Stock, J.B. 1990. Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis. Biochemistry 29, 5436–5442.

    Article  CAS  PubMed  Google Scholar 

  • Menon, S. and Wang, S. 2011. Structure of the response regulator PhoP from Mycobacterium tuberculosis reveals a dimer through the receiver domain. Biochemistry 50, 5948–5957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer, M.G., Park, S., Zeringue, L., Staley, M., McKinstry, M., Kaufman, R.I., Zhang, H., Yan, D., Yennawar, N., and Yennawar, H. 2001. A dimeric two-component receiver domain inhibits the σ54-dependent ATPase in DctD. FASEB J. 15, 1326–1328.

    CAS  PubMed  Google Scholar 

  • Muchová, K., Lewis, R., Perečko, D., Brannigan, J., Ladds, J., Leech, A., Wilkinson, A., and Barák, I. 2004. Dimer‐induced signal propagation in Spo0A. Mol. Microbiol. 53, 829–842.

    Article  PubMed  Google Scholar 

  • Mueller, D.R., Vincent, W.F., Bonilla, S., and Laurion, I. 2005. Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol. Ecol. 53, 73–87.

    Article  CAS  PubMed  Google Scholar 

  • Murshudov, G.N., Vagin, A.A., and Dodson, E.J. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. Sect. D. Biol. Crystallogr. 53, 240–255.

    Article  CAS  Google Scholar 

  • Narayanan, A., Kumar, S., Evrard, A.N., Paul, L.N., and Yernool, D.A. 2014. An asymmetric heterodomain interface stabilizes a response regulator-DNA complex. Nat. Commun. 5, 3282.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J., and Setlow, P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64, 548–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otwinowski, Z. and Minor, W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326.

    Article  CAS  Google Scholar 

  • Park, A.K., Moon, J.H., Lee, K.S., and Chi, Y.M. 2012. Crystal structure of receiver domain of putative NarL family response regulator spr1814 from Streptococcus pneumoniae in the absence and presence of the phosphoryl analog beryllofluoride. Biochem. Biophys. Res. Commun. 421, 403–407.

    Article  CAS  PubMed  Google Scholar 

  • Park, A.K., Moon, J.H., Oh, J.S., Lee, K.S., and Chi, Y.M. 2013. Crystal structure of the response regulator spr1814 from Streptococcus pneumoniae reveals unique interdomain contacts among NarL family proteins. Biochem. Biophys. Res. Commun. 434, 65–69.

    Article  CAS  PubMed  Google Scholar 

  • Perego, M. 1998. Kinase-phosphatase competition regulates Bacillus subtilis development. Trends Microbiol. 6, 366–370.

    Article  CAS  PubMed  Google Scholar 

  • Perego, M., Cole, S.P., Burbulys, D., Trach, K., and Hoch, J.A. 1989. Characterization of the gene for a protein kinase which phosphorylates the sporulation-regulatory proteins Spo0A and Spo0F of Bacillus subtilis. J. Bacteriol. 171, 6187–6196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podgornaia, A.I., Casino, P., Marina, A., and Laub, M.T. 2013. Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling. Structure 21, 1636–1647.

    Article  CAS  PubMed  Google Scholar 

  • Price, P.B. 2000. A habitat for psychrophiles in deep Antarctic ice. Proc. Natl. Acad. Sci. USA 97, 1247–1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland, S.L., Burkholder, W.F., Cunningham, K.A., Maciejewski, M.W., Grossman, A.D., and King, G.F. 2004. Structure and mechanism of action of Sda, an inhibitor of the histidine kinases that regulate initiation of sporulation in Bacillus subtilis. Mol. Cell 13, 689–701.

    Article  CAS  PubMed  Google Scholar 

  • Schuck, P. 2000. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson, K. and Hoch, J.A. 2001. PAS-A domain of phosphorelay sensor kinase A: a catalytic ATP-binding domain involved in the initiation of development in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 98, 15251–15256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson, K. and Hoch, J.A. 2002. Evolution of signalling in the sporulation phosphorelay. Mol. Microbiol. 46, 297–304.

    Article  CAS  PubMed  Google Scholar 

  • Stock, A.M., Martinez-Hackert, E., Rasmussen, B.F., West, A.H., Stock, J.B., Ringe, D., and Petsko, G.A. 1993. Structure of the magnesium-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry 32, 13375–13380.

    Article  CAS  PubMed  Google Scholar 

  • Toro‐Roman, A., Wu, T., and Stock, A.M. 2005. A common dimerization interface in bacterial response regulators KdpE and TorR. Protein Sci. 14, 3077–3088.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trajtenberg, F., Albanesi, D., Ruétalo, N., Botti, H., Mechaly, A.E., Nieves, M., Aguilar, P.S., Cybulski, L., Larrieux, N., and de Mendoza, D. 2014. Allosteric activation of bacterial response regulators: the role of the cognate histidine kinase beyond phosphorylation. MBio 5, E02105–02114.

    Article  Google Scholar 

  • Tzeng, Y.L., Zhou, X.Z., and Hoch, J.A. 1998. Phosphorylation of the Spo0B response regulator phosphotransferase of the phosphorelay initiating development in Bacillus subtilis. J. Biol. Chem. 273, 23849–23855.

    Article  CAS  PubMed  Google Scholar 

  • Vagin, A. and Teplyakov, A. 1997. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025.

    Article  CAS  Google Scholar 

  • Vaguine, A.A., Richelle, J., and Wodak, S. 1999. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. Sect. D. Biol. Crystallogr. 55, 191–205.

    Article  CAS  Google Scholar 

  • Varughese, K.I., Tsigelny, I., and Zhao, H. 2006. The crystal structure of beryllofluoride Spo0F in complex with the phosphotransferase Spo0B represents a phosphotransfer pretransition state. J. Bacteriol. 188, 4970–4977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkman, B.F., Nohaile, M.J., Amy, N.K., Kustu, S., and Wemmer, D.E. 1995. Three-dimensional solution structure of the N-terminal receiver domain of NTRC. Biochemistry 34, 1413–1424.

    Article  CAS  PubMed  Google Scholar 

  • Volz, K. and Matsumura, P. 1991. Crystal structure of Escherichia coli CheY refined at 1.7-A resolution. J. Biol. Chem. 266, 15511–15519.

    CAS  PubMed  Google Scholar 

  • Willett, J.W., Herrou, J., Briegel, A., Rotskoff, G., and Crosson, S. 2015. Structural asymmetry in a conserved signaling system that regulates division, replication, and virulence of an intracellular pathogen. Proc. Natl. Acad. Sci. USA 112, E3709–E3718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G., and McCoy, A. 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D. Biol. Crystallogr. 67, 235–242.

    Article  CAS  Google Scholar 

  • Wootton, J. and Drummond, M. 1989. The Q-linker: a class of interdomain sequences found in bacterial multidomain regulatory proteins. Protein Eng. 2, 535–543.

    Article  CAS  PubMed  Google Scholar 

  • Zapf, J., Whiteley, J.M., Hoch, J.A., Xuong, N.H., and Varughese, K.I. 1996. Crystal structure of a phosphatase-resistant mutant of sporulation response regulator Spo0F from Bacillus subtilis. Structure 4, 679–690.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HaJeung Park or Jun Hyuck Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C.W., Park, SH., Lee, S.G. et al. Crystal structure of the inactive state of the receiver domain of Spo0A from Paenisporosarcina sp. TG-14, a psychrophilic bacterium isolated from an Antarctic glacier. J Microbiol. 55, 464–474 (2017). https://doi.org/10.1007/s12275-017-6599-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-6599-9

Keywords

Navigation