Skip to main content
Log in

Glyoxal detoxification in Escherichia coli K-12 by NADPH dependent aldo-keto reductases

  • Note
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Glyoxal (GO) and methylglyoxal (MG) are reactive carbonyl compounds that are accumulated in vivo through various pathways. They are presumably detoxified through multiple pathways including glutathione (GSH)-dependent/independent glyoxalase systems and NAD(P)H dependent reductases. Previously, we reported an involvement of aldo-ketoreductases (AKRs) in MG detoxification. Here, we investigated the role of various AKRs (YqhE, YafB, YghZ, YeaE, and YajO) in GO metabolism. Enzyme activities of the AKRs to GO were measured, and GO sensitivities of the corresponding mutants were compared. In addition, we examined inductions of the AKR genes by GO. The results indicate that AKRs efficiently detoxify GO, among which YafB, YghZ, and YeaE are major players.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abordo, E.A., Minhas, H.S., and Thornalley, P.J. 1999. Accumulation of alpha-oxoaldehydes during oxidative stress: a role in cytotoxicity. Biochem. Pharmacol. 58, 641–648.

    Article  PubMed  CAS  Google Scholar 

  • Altaras, N.E. and Cameron, D.C. 1999. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol. 65, 1180–1185.

    PubMed  CAS  Google Scholar 

  • Baldoma, L. and Aguilar, J. 1987. Involvement of lactaldehyde dehydrogenase in several metabolic pathways of Escherichia coli K12. J. Biol. Chem. 262, 13991–13996.

    PubMed  CAS  Google Scholar 

  • Benov, L. and Fridovich, I. 2002. Induction of the soxRS regulon of Escherichia coli by glycolaldehyde. Arch. Biochem. Biophys. 407, 45–48.

    Article  PubMed  CAS  Google Scholar 

  • Boronat, A. and Aguilar, J. 1979. Rhamnose-induced propanediol oxidoreductase in Escherichia coli: Purification, properties, and comparison with the fucose-induced enzyme. J. Bacteriol. 140, 320–326.

    PubMed  CAS  Google Scholar 

  • Brownlee, M. 1995. Advanced protein glycosylation in diabetes and aging. Annu. Rev. Med. 46, 223–234.

    Article  PubMed  CAS  Google Scholar 

  • Cocks, G.T., Aguilar, T., and Lin, E.C. 1974. Evolution of L-1, 2-propanediol catabolism in Escherichia coli by recruitment of enzymes for L-fucose and L-lactate metabolism. J. Bacteriol. 118, 83–88.

    PubMed  CAS  Google Scholar 

  • Kasai, H., Iwamoto-Tanaka, N., and Fukada, S. 1998. DNA modifications by the mutagen glyoxal: adduction to G and C, deamination of C and GC and GA cross-linking. Carcinogenesis 19, 1459–1465.

    Article  PubMed  CAS  Google Scholar 

  • Ko, J., Kim, I., Yoo, S., Min, B., Kim, K., and Park, C. 2005. Conversion of methylglyoxal to acetol by Escherichia coli aldo-keto reductases. J. Bacteriol. 187, 5782–5789.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, M., Lee, J., Lee, C., and Park, C. 2012. Genomic rearrangements leading to overexpression of aldo-keto reductase YafB of Escherichia coli confer resistance to glyoxal. J. Bacteriol. 194, 1979–1988.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C., Kim, I., Lee, J., Lee, K.L., Min, B., and Park, C. 2010. Transcriptional activation of the aldehyde reductase YqhD by YqhC and its implication in glyoxal metabolism of Escherichia coli K-12. J. Bacteriol. 192, 4205–4214.

    Article  PubMed  CAS  Google Scholar 

  • Luth, H.J., Ogunlade, V., Kuhla, B., Kientsch-Engel, R., Stahl, P., Webster, J., Arendt, T., and Munch, G. 2005. Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer’s disease brains. Cereb. Cortex 15, 211–220.

    Article  PubMed  Google Scholar 

  • Munch, G., Luth, H.J., Wong, A., Arendt, T., Hirsch, E., Ravid, R., and Riederer, P. 2000. Crosslinking of alpha-synuclein by advanced glycation endproducts—an early pathophysiological step in Lewy body formation? J. Chem. Neuroanat. 20, 253–257.

    Article  PubMed  CAS  Google Scholar 

  • Obradors, N., Cabiscol, E., Aguilar, J., and Ros, J. 1998. Site-directed mutagenesis studies of the metal-binding center of the iron-dependent propanediol oxidoreductase from Escherichia coli. Eur. J. Biochem. 258, 207–213.

    Article  PubMed  CAS  Google Scholar 

  • Okado-Matsumoto, A. and Fridovich, I. 2000. The role of alpha, beta-dicarbonyl compounds in the toxicity of short chain sugars. J. Biol. Chem. 275, 34853–34857.

    Article  PubMed  CAS  Google Scholar 

  • Rondeau, P. and Bourdon, E. 2011. The glycation of albumin: Structural and functional impacts. Biochimie 93, 645–658.

    Article  PubMed  CAS  Google Scholar 

  • Salmon, K., Hung, S.P., Mekjian, K., Baldi, P., Hatfield, G.W., and Gunsalus, R.P. 2003. Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J. Biol. Chem. 278, 29837–29855.

    Article  PubMed  CAS  Google Scholar 

  • Subedi, K.P., Choi, D., Kim, I., Min, B., and Park, C. 2011. Hsp31 of Escherichia coli K-12 is glyoxalase III. Mol. Microbiol. 81, 926–936.

    Article  PubMed  CAS  Google Scholar 

  • Thornalley, P.J. 1990. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem. J. 269, 1–11.

    PubMed  CAS  Google Scholar 

  • Thornalley, P.J. 1998. Glutathione-dependent detoxification of alpha-oxoaldehydes by the glyoxalase system: Involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Chem. Biol. Interact. 111-112, 137–151.

    Article  PubMed  Google Scholar 

  • Thornalley, P.J., Langborg, A., and Minhas, H.S. 1999. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 344 Pt 1, 109–116.

    Article  Google Scholar 

  • Tucker, N.P., Le Brun, N.E., Dixon, R., and Hutchings, M.I. 2010. There’s NO stopping NsrR, a global regulator of the bacterial NO stress response. Trends Microbiol. 18, 149–156.

    Article  PubMed  CAS  Google Scholar 

  • Turner, P.C., Miller, E.N., Jarboe, L.R., Baggett, C.L., Shanmugam, K.T., and Ingram, L.O. 2011. YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance. J. Ind. Microbiol. Biotechnol. 38, 431–439.

    Article  PubMed  CAS  Google Scholar 

  • Vander Jagt, D.L. and Hunsaker, L.A. 2003. Methylglyoxal metabolism and diabetic complications: Roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase. Chem. Biol. Interact. 143-144, 341–351.

    Article  Google Scholar 

  • Vander Jagt, D.L., Robinson, B., Taylor, K.K., and Hunsaker, L.A. 1992. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J. Biol. Chem. 267, 4364–4369.

    Google Scholar 

  • Zhu, Y. and Lin, E.C. 1989. L-1,2-propanediol exits more rapidly than L-lactaldehyde from Escherichia coli. J. Bacteriol. 171, 862–867.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chankyu Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C., Kim, I. & Park, C. Glyoxal detoxification in Escherichia coli K-12 by NADPH dependent aldo-keto reductases. J Microbiol. 51, 527–530 (2013). https://doi.org/10.1007/s12275-013-3087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-3087-8

Keywords

Navigation