Skip to main content
Log in

Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Fungal endophytes were isolated from the leaves of soybean cultivars in Brazil using two different isolation techniques — fragment plating and the innovative dilution-to-extinction culturing — to increase the species richness, frequency of isolates and diversity. A total of 241 morphospecies were obtained corresponding to 62 taxa that were identified by analysis of the internal transcribed spacer (ITS) of the ribosomal DNA (rDNA). The Phylum Ascomycota predominated, representing 99% and 95.2% of isolates in the Monsoy and Conquista cultivars, respectively, whereas the Phylum Basidiomycota represented 1% and 4.8% of isolates, respectively. The genera Ampelomyces, Annulohypoxylon, Guignardia, Leptospora, Magnaporthe, Ophiognomonia, Paraconiothyrium, Phaeosphaeriopsis, Rhodotorula, Sporobolomyces, and Xylaria for the first time were isolated from soybean; this suggests that soybean harbours novel and highly diverse fungi. The yeasts genera Rhodotorula and Sporobolomyces (subphylum Pucciniomycotina) represent the Phylum Basidiomycota. The species richness was greater when both isolation techniques were used. The diversity of fungal endophytes was similar in both cultivars when the same isolation technique was used except for Hill’s index, N1. The use of ITS region sequences allowed the isolates to be grouped according to Order, Class and Phylum. Ampelomyces, Chaetomium, and Phoma glomerata are endophytic species that may play potential roles in the biological control of soybean pathogens. This study is one of the first to apply extinction-culturing to isolate fungal endophytes in plant leaves, thus contributing to the development and improvement of this technique for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida, F., Cerqueira, F.M., Silva, R.D.N., Ulhoa, C.J., and Lima, A.L. 2007. Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production. Biotechnol. Lett. 29, 1189–1193.

    Article  PubMed  CAS  Google Scholar 

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol.215, 403–410.

    PubMed  CAS  Google Scholar 

  • Aly, A.H., Edrada-Ebel, R., Wray, V., Muller, W.E., Kozytska, S., Hentschel, U., Proksch, P., and Ebel, R. 2008. Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry69, 1716–1725.

    Article  PubMed  CAS  Google Scholar 

  • Arie, T., Kobayashi, Y., Okada, G., Kono, Y., and Yamaguchi, I. 1998. Control of soilborne clubroot disease of cruciferous plants by epoxydon from Phoma glomerata. Plant Pathol.47, 743–748.

    Article  Google Scholar 

  • Arnold, A.E. 2007. Understanding the diversity of foliar fungal endophytes: progress, challenges, and frontiers. Fungal Biol. Reviews21, 51–66.

    Article  Google Scholar 

  • Arnold, A.E. 2008. Endophytic fungi: Hidden components of tropical community ecology, pp. 254–271. In Schnitzer, S.A. and Carson, W.P. (eds.), Tropical Forest Community Ecology Blackwell Scientific.

  • Arnold, A.E. and Lutzoni, F. 2007. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology88, 541–549.

    Article  PubMed  Google Scholar 

  • Arnold, A.E., Mejia, L.C., Kyllo, D.A., Rojas, E.I., Maynard, Z., Robbins, N., and Herre, E.A. 2003. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci. USA100, 15649–15654.

    Article  PubMed  CAS  Google Scholar 

  • Azevedo, J.L., Maccheroni Jr., W., Pereira, J.O., and Araújo, W.L. 2000. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J. Biotechnol.3, 40–65.

    Article  Google Scholar 

  • Bailey, B.A., Bae, H., Strem, M.D., Crozier, J., Thomas, S.E., Samuels, G.J., Vinyard, B.T., and Holmes, K.A. 2008. Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol. Control46, 24–35.

    Article  Google Scholar 

  • Bayat, F., Mirlohi, A., and Khodambashi, M. 2009. Effects of endophytic fungi on some drought tolerance mechanisms of tall fescue in a hydroponics culture. Russ. J. Plant Physiol.56, 510–516.

    Article  CAS  Google Scholar 

  • Bills, G.F., Christensen, M., Powell, M., and Thorn, G. 2004. Saprobic soil fungi, pp. 271–302. In Mueller, G.M., Bills, G.F., and Foster, M.S. (eds.), Biodiversity of fungi — Inventory and Monitoring Methods Elsevier Academic Press, Oxford.

    Google Scholar 

  • Cao, R., Liu, X., Gao, K., Mendgen, K., Kang, Z., Gao, J., Dai, Y., and Wang, X. 2009. Mycoparasitism of endophytic fungi isolated from reed on soilborne phytopathogenic fungi and production of cell wall-degrading enzymes in vitro. Curr. Microbiol.59, 584–592.

    Article  PubMed  CAS  Google Scholar 

  • Carrol, G. 1988. Fungal endophytes in stems and leaves: from latent pathogen to mutualist symbiont. Ecology69, 2–9.

    Article  Google Scholar 

  • Cavalli-Sforza, L.L. and Edwards, A.W.F. 1967. Phylogenetic analysis. Models and estimation procedures. Am. J. Hum. Genet.19, 233–257.

    PubMed  CAS  Google Scholar 

  • Collado, J., Platas, G., Paulus, B., and Bills, G.F. 2007. High-throughput culturing of fungi from plant litter by a dilution-to-extinction technique. FEMS Microbiol. Ecol.60, 521–533.

    Article  PubMed  CAS  Google Scholar 

  • Damm, U., Baroncelli, R., Cai, L., Kubo, Y., O’Connell, R., Weir, B., Yoshino, K., and Cannon, P.F. 2010. Colletotrichum: species, ecology and interactions. IMA Fungus1, 161–165.

    Article  PubMed  Google Scholar 

  • De Bary, A. 1866. Morphologie und Physiologie der Pilze, Frechten und Myxomyceten. In H. s. H. o. P. Botany (ed.), vol. 2. En-gelmann, Leipzig, Germany.

    Google Scholar 

  • Dhingra, O.D., Mizubuti, E.S.G., and Santana, F.M. 2003. Chaetomium globosum for reducing primary inoculum of Diaporthe phaseolorum f. sp. meridionalis in soil-surface soybean stubble in field conditions. Biol. Control26, 302–310.

    Article  Google Scholar 

  • Dingle, J. and Mcgee, P.A. 2003. Some endophytic fungi reduce the density of pustules of Puccinia recondita f. sp tritici in wheat. Mycol. Res.107, 310–316.

    Article  PubMed  Google Scholar 

  • El-Ghaouth, A. 1997. Biologically-based alternatives to synthetic fungicides for the control of postharvest diseases. J. Ind. Microbiol. Biotechnol.19, 160–162.

    Article  CAS  Google Scholar 

  • Elbersen, H.W. and West, C.P. 1996. Growth and water relations of field-grown tall fescue as influenced by drought and endophyte. Grass Forage Sci.51, 333–342.

    Article  Google Scholar 

  • Embrapa. 2011. Tecnologias de Produção de Soja — Região Central do Brasil 2012 e 2013, p. 263. Embrapa Soja, Londrina.

    Google Scholar 

  • Faeth, S.H. and Fagan, W.F. 2002. Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr. Comp. Biol.42, 360–368.

    Article  PubMed  Google Scholar 

  • Felsenstein, J. 1985.Confidence limits on phylogenies: An approach using the bootstrap. Evolution39, 783–791.

    Article  Google Scholar 

  • Fisher, P.J. 1996. Survival and spread of the endophyte Stagonospora pteridiicola in Pteridium aquilinum, other ferns and some flowering plants. New Phytol.132, 119–122.

    Article  Google Scholar 

  • Fisher, P.J., Petrini, O., and Scott, H.M.L. 1992. The distribution of some fungal and bacterial endophytes in Maize (Zea mays L). New Phytol.122, 299–305.

    Article  Google Scholar 

  • Frohlich, J., Hyde, K.D., and Petrini, O. 2000. Endophytic fungi associated with palms. Mycol. Res.104, 1202–1212.

    Article  Google Scholar 

  • Gamboa, M.A., Laureano, S., and Bayman, P. 2002. Measuring diversity of endophytic fungi in leaf fragments: does size matter? Mycopathologia156, 41–45.

    Article  PubMed  Google Scholar 

  • Gardes, M. and Bruns, T.D. 1993. ITS primers enhanced specificity for basidiomycetes — application to the identifcation of mycorrhizae and rusts. Mol. Ecol.2, 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Gazis, R. and Chaverri, P. 2010. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol.3, 240–254.

    Article  Google Scholar 

  • Goldman, N., Anderson, J.P., and Rodrigo, A.G. 2000. Likelihood-based tests of topologies in phylogenetics. Syst. Biol.49, 652–670.

    Article  PubMed  CAS  Google Scholar 

  • Guetsky, R., Shtienberg, D., Elad, Y., and Dinoor, A. 2001. Combining biocontrol agents to reduce the variability of biological control. Phytopathology91, 621–627.

    Article  PubMed  CAS  Google Scholar 

  • Guo, L.D., Hyde, K.D., and Liew, E.C.Y. 2000. Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol.147, 617–630.

    Article  CAS  Google Scholar 

  • Hamayun, M., Khan, S.A., Kim, H.Y., Chaudhary, M.F., Hwang, Y.H., Shin, D.H., Kim, I.K., Lee, B.H., and Lee, I.J. 2009. Gibberellin production and plant growth enhancement by newly isolated strain of Scolecobasidium tshawytschae. J. Microbiol. Biotechnol.19, 560–565.

    PubMed  CAS  Google Scholar 

  • Hanada, R.E., de Jorge Souza, T., Pomella, A.W.V., Hebbar, K.P., Pereira, J.O., Ismaiel, A., and Samuels, G.J. 2008. Trichoderma martiale sp. nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol. Res.112, 1335–1343.

    Article  PubMed  CAS  Google Scholar 

  • Harada, M.L., Schneider, H., Schneider, M.P., Sampaio, I., Czelusniak, J., and Goodman, M. 1995. DNA evidence on the phylogenetic systematics of New World monkeys: support for the sister-grouping of Cebus and Saimiri from two unlinked nuclear genes. Mol. Phylogenet. Evol.4, 331–349.

    Article  PubMed  CAS  Google Scholar 

  • Hata, K., Atari, R., and Sone, K. 2002. Isolation of endophytic fungi from leaves of Pasania edulis and their within-leaf distributions. Mycoscience43, 369–373.

    Article  Google Scholar 

  • Hill, M.O. 1973. Diversity and Evenness — Unifying notation and its consequences. Ecology54, 427–432.

    Article  Google Scholar 

  • Huang, W.J., Cai, Y.Z., Surveswaran, S., Hyde, K.D., Corke, H., and Sun, M. 2009. Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers.36, 69–88.

    CAS  Google Scholar 

  • Huelsenbeck, J.P. and Crandall, K.A. 1997. Phylogeny estimation and hypothesis testing using maximum likelihood. Annu. Rev. Ecol. Syst.28, 437–466.

    Article  Google Scholar 

  • Huelsenbeck, J.P. and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics17, 754–755.

    Article  PubMed  CAS  Google Scholar 

  • Hyde, K.D. and Soytong, K. 2008. The fungal endophyte dilemma. Fungal Divers.33, 163–173.

    Google Scholar 

  • Joshee, S., Paulus, B.C., Park, D., and Johnston, P.R. 2009. Diversity and distribution of fungal foliar endophytes in New Zealand Podocarpaceae. Mycol. Res.113, 1003–1015.

    Article  PubMed  Google Scholar 

  • Kaewchai, S., Soytong, K., and Hyde, K.D. 2009. Mycofungicides and fungal biofertilizers. Fungal Divers.38, 25–50.

    Google Scholar 

  • Kimati, H., Amorim, L., Bergamin Filho, A., Camargo, L.E.A., and Rezende, J.A.M. 1997. Manual de Fitopatologia Vol. 2: Doenças das plantas cultivadas, pp. 705. 3th ed. Editora Agronômica Ceres., São Paulo-SP, Brazil.

    Google Scholar 

  • Kiss, L. 2003. A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manage. Sci.59, 475–483.

    Article  CAS  Google Scholar 

  • Kumar, S., Nei, M., Dudley, J., and Tamura, K. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform.9, 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Lacap, D.C., Hyde, K.D., and Liew, E.C.Y. 2003. An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences. Fungal Divers.12, 53–66.

    Google Scholar 

  • Larran, S., Perello, A., Simon, M.R., and Moreno, V. 2002a. Isolation and analysis of endophytic microorganisms in wheat Triticum aestivum L.) leaves. World J. Microbiol. Biotechnol.18, 683–686.

    Article  CAS  Google Scholar 

  • Larran, S., Perello, A., Simon, M.R., and Moreno, V. 2007. The endophytic fungi from wheat (Triticum aestivum L.). World J. Microbiol. Biotechnol.23, 565–572.

    Article  Google Scholar 

  • Larran, S., Rollán, C., Brunoángeles, H., Alippi, H.E., and Urrutia, M.I. 2002b. Nota corta: Endophytic fungi in healthy soybean leaves. Invest. Agr. Prod. Veg.17, 173–178.

    Google Scholar 

  • Li, W.C., Zhou, J., Guo, S.Y., and Guo, L.D. 2007. Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers.25, 69–80.

    Google Scholar 

  • Lodge, D.J., Fisher, P.J., and Sutton, B.C. 1996. Endophytic fungi of Manilkara bidentata leaves in Puerto Rico. Mycologia88, 733–738.

    Article  Google Scholar 

  • Maccheroni, Jr., W. and Azevedo, J.L. 1998. Synthesis and secretion of phosphatases by endophytic isolates of Colletotrichum musae grown under conditions of nutritional starvation. J. Gen. Appl. Microbiol.44, 381–387.

    Article  CAS  Google Scholar 

  • Magurran, A.E. 1988. Ecological diversity and its measurement. p. 179. Princeton University Press, Princeton, USA.

    Book  Google Scholar 

  • Marquez, L.M., Redman, R.S., Rodriguez, R.J., and Roossinck, M.J. 2007. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science315, 513–515.

    Article  PubMed  CAS  Google Scholar 

  • Martin, F.N. 2003. Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annu. Rev. Phytopathol.41, 325–350.

    Article  PubMed  CAS  Google Scholar 

  • Miller, W.A. and Roy, K.W. 1982. Mycoflora of soybean leaves, pods and seeds in Mississippi. Can. J. Bot.60, 2716–2723.

    Article  Google Scholar 

  • Nilsson, R.H., Kristiansson, E., Ryberg, M., Hallenberg, N., and Larsson, K.H. 2008. Intraspecific ITS variability in the kingdom fungi as expressed in the International Sequence Databases and its implications for molecular species identification. Evol. Bioinform.4, 193–201.

    Google Scholar 

  • Nunes, C.A. 2012. Biological control of postharvest diseases of fruit. Eur. J. Plant. Pathol.133, 181–196.

    Article  Google Scholar 

  • Nylander, J.A.A. 2004. MrModeltestv2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Sweden.

    Google Scholar 

  • Orole, O.O. and Adejumo, T.O. 2011. Bacterial and fungal endophytes associated with grains and roots of maize. J. Ecol. Nat. Environ.3, 298–303.

    Google Scholar 

  • Ownley, B.H., Gwinn, K.D., and Vega, F.E. 2010. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl55, 113–128.

    Article  Google Scholar 

  • Park, J-H., Choi, G.J., Jang, K.S., Lim, H.K., Kim, H.T., Cho, K.Y., and Kim, J-C. 2005. Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiol. Lett.252, 309–313.

    Article  PubMed  CAS  Google Scholar 

  • Paulitz, T.C. and Bélanger, R.R. 2001. Biological control in greenhouse systems. Annu. Rev. Phytopathol.39, 103–133.

    Article  PubMed  CAS  Google Scholar 

  • Paulus, B., Gadek, P., and Hyde, K.D. 2003. Estimation of microfungal diversity in tropical rainforest leaf litter using particle filtration: the effects of leaf storage and surface treatment. Mycol. Res.107, 748–756.

    Article  PubMed  Google Scholar 

  • Pereira, J.O. 1993. Ph. D. thesis. Fungos endofíticos de hospedeiros tropicais Stylosanthes guianensis e Musa Cavendish. Esalq/USP, Piracicaba, Brazil.

    Google Scholar 

  • Petrini, O. 1991. Fungal endophytes of tree leaves. In Andrews, J.H. and Hirano, S.S. (eds.), Microbial Ecology of Leaves. Springer Verlag, New York, USA.

    Google Scholar 

  • Phoulivong, S., Cai, L., Chen, H., McKenzie, E., Abdelsalam, K., Chukeatirote, E., and Hyde, K.D. 2010. Colletotrichum gloeosporioides: is not a common pathogen on tropical fruits. Fungal Divers.44, 33–43.

    Article  Google Scholar 

  • Pimentel, I.C., Glienke-Blanco, C., Gabardo, J., Stuart, R.M., and Azevedo, J.L. 2006. Identification and colonization of endophytic fungi from soybean (Glycine max (L.) Merril) under different environmental conditions. Braz. Arch. Biol. Technol.49, 705–711.

    Article  Google Scholar 

  • Pinruan, U., Rungjindamai, N., Choeyklin, R., Lumyong, S., Hyde, K.D., and Jones, E.B.G. 2010. Occurrence and diversity of basidiomycetous endophytes from the oil palm, Elaeis guineensis in Thailand. Fungal Divers.41, 71–88.

    Article  Google Scholar 

  • Posada, D. and Crandall, K.A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics14, 817–818.

    Article  PubMed  CAS  Google Scholar 

  • Qin, J.C., Zhang, Y.M., Gao, J.M., Bai, M.S., Yang, S.X., Laatsch, H., and Zhang, A.L. 2009. Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg. Med. Chem. Lett.19, 1572–1574.

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Rakotoniriana, E.F., Munaut, F., Decock, C., Randriamampionona, D., Andriambololoniaina, M., Rakotomalala, T., Rakotonirina, E.J., Rabemanantsoa, C., Cheuk, K., Ratsimamanga, S.U., andet al. 2008. Endophytic fungi from leaves of Centella asiatica: occurrence and potential interactions within leaves. Antonie van Leeuwenhoek93, 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Redman, R.S., Dunigan, D.D., and Rodriguez, R.J. 2001. Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol. 151, 705–716

    Article  Google Scholar 

  • Redman, R.S., Ranson, J.C., and Rodriguez, R.J. 1999. Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic, endophytic mutualist by gene disruption. Mol. Plant-Microbe Interact.12, 969–975.

    Article  CAS  Google Scholar 

  • Redman, R.S., Sheehan, K.B., Stout, R.G., Rodriguez, R.J., and Henson, J.M. 2002. Thermotolerance generated by plant/fungal symbiosis. Science298, 1581–1581.

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Orduna, F.N., Suarez-Sanchez, R.A., Flores-Bustamante, Z.R., Gracida-Rodriguez, J.N., and Flores-Cotera, L.B. 2011. Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Divers.47, 65–74.

    Article  Google Scholar 

  • Rodriguez, R.J., Freeman, D.C., McArthur, E.D., Kim, Y.O., and Redman, R.S. 2009. Symbiotic regulation of plant growth, development and reproduction. Commun. Integr. Biol.2, 141–143.

    PubMed  Google Scholar 

  • Rogers, J.S. and Swofford, D.L. 1998. A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst. Biol.47, 77–89.

    Article  PubMed  CAS  Google Scholar 

  • Roy, K.W., Baird, R.E., and Abney, T.S. 2001. A review of soybean (Glycine max) seed, pod, and flower mycofloras in North America, with methods and a key for identification of selected fungi. Mycopathologia150, 15–27.

    Article  PubMed  CAS  Google Scholar 

  • Rungjindamai, N., Pinruan, U., Choeyklin, R., Hattori, T., and Jones, E.B.G. 2008. Molecular characterization of basidiomycetous endophytes isolated from leaves, rachis and petioles of the oil palm, Elaeis guineensis, in Thailand. Fungal Divers.33, 133–161.

    Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4, 406–425.

    PubMed  CAS  Google Scholar 

  • Sakayaroj, J., Preedanon, S., Supaphon, O., Jones, E.B.G., and Phongpaichit, S. 2010. Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers.42, 27–45.

    Article  Google Scholar 

  • Santamaría, J. and Bayman, P. 2005. Fungal epiphytes and endophytes of coffee leaves (Coffea arabica). Microb. Ecol.50, 1–8.

    Article  PubMed  Google Scholar 

  • Schulz, B. and Boyle, C. 2005. The endophytic continuum. Mycol. Res.109, 661–686.

    Article  PubMed  Google Scholar 

  • Schulz, B., Guske, S., Dammann, U., and Boyle, C. 1998. Endophyte host interactions II. Defining symbiosis of the endophyte host interaction. Symbiosis25, 213–227.

    Google Scholar 

  • Sediyama, T. 2009. Tecnologias de produção e usos da soja, p. 314. Editora Mecenas, Londrina.

    Google Scholar 

  • Silva, G.H., de Oliveira, C.M., Teles, H.L., Pauletti, P.M., Castro-Gamboa, I., Silva, D.H.S., Bolzani, V.S., Young, M.C.M., Costa-Neto, C.M., Pfenning, L.H., andet al. 2010. Sesquiterpenes from Xylaria sp., an endophytic fungus associated with Piper aduncum (Piperaceae). Phytochem. Lett.3, 164–167.

    Article  CAS  Google Scholar 

  • Simpson, E.H. 1949. Measurement of diversity. Nature163, 688–688.

    Article  Google Scholar 

  • Sinclair, J.B. 1991. Latent infection of soybean plants and seeds by fungi. Plant Dis.75, 220–224.

    Article  Google Scholar 

  • Sirrenberg, A., Gobel, C., Grond, S., Czempinski, N., Ratzinger, A., Karlovsky, P., Santos, P., Feussner, I., and Pawlowski, K. 2007. Piriformospora indica affects plant growth by auxin production. Physiol. Plant.131, 581–589.

    Article  PubMed  CAS  Google Scholar 

  • Soytong, K., Kanokmedhakul, S., Kukongviriyapan, V., and Isobe, M. 2001. Application of Chaetomium species (Ketomium new broad spectrum biological fungicide for plant disease control: A review article. Fungal Divers.7, 1–15.

    Google Scholar 

  • Stierle, A., Strobel, G., and Stierle, D. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science260, 214–216.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J.K., Polishook, J.D., and White Jr., J.F. 2004. Endophytic fungi, pp. 241–270. In Mueller, G.M., Bills, G.F., and Foster, M.S. (eds.), Biodiversity of Fungi — Inventory and Monitoring Methods. Elsevier Academic Press, Oxford, UK.

    Chapter  Google Scholar 

  • Strobel, G.A. 2003. Endophytes as sources of bioactive products. Microbes Infect.5, 535–544.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, R.F. and White Jr, J.F. 2000. Phoma glomerata as a mycoparasite of powdery mildew. Appl. Environ. Microbiol.66, 425–427.

    Article  PubMed  CAS  Google Scholar 

  • Sundheim, L. 1982. Control of cucumber powdery mildew by the hyperparasite Ampelomyces quisqualis and fungicides. Plant Pathol.31, 209–214.

    Article  Google Scholar 

  • Suryanarayanan, T.S., Thirunavukkarasu, N., Govindarajulu, M.B., Sasse, F., Jansen, R., and Murali, T.S. 2009. Fungal endophytes and bioprospecting. Fungal Biol. Reviews23, 9–19.

    Article  Google Scholar 

  • Suryanarayanan, T.S., Wittlinger, S.K., and Faeth, S.H. 2005. Endophytic fungi associated with cacti in Arizona. Mycol. Res.109, 635–639.

    Article  PubMed  Google Scholar 

  • Swofford, D.L., Waddell, P.J., Huelsenbeck, J.P., Foster, P.G., Lewis, P.O., and Rogers, J.S. 2001. Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst. Biol.50, 525–539.

    Article  PubMed  CAS  Google Scholar 

  • Syed, N.A., Midgley, D.J., Ly, P.K.C., Saleeba, J.A., and McGee, P.A. 2009. Do plant endophytic and free-living Chaetomium species differ? Aust. Mycol.28, 51–55.

    Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol.28, 2731–2739.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, A., Takemoto, D., Chujo, T., and Scott, B. 2012. Fungal endophytes of grasses. Curr. Opin. Plant. Biol.15, 1–17.

    Article  CAS  Google Scholar 

  • U’Ren, J., Lutzoni, F., Miadlikowska, J., and Arnold, A.E. 2010. Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens. Microb. Ecol.60, 340–353.

    Article  PubMed  Google Scholar 

  • Unterseher, M. and Schnittler, M. 2009. Dilution to extinction cultivation of leaf inhabiting endophytic fungi in beech (Fagus sylvatica L.) — Different cultivation techniques influence fungal biodiversity assessment. Mycol. Res.113, 645–654.

    Article  PubMed  Google Scholar 

  • Unterseher, M. and Schnittler, M. 2010. Species richness analysis and ITS rDNA phylogeny revealed the majority of cultivable foliar endophytes from beech (Fagus sylvatica). Fungal Ecol.3, 366–378.

    Article  Google Scholar 

  • Vazquez-Garciduenas, S., Leal-Morales, C.A., and Herrera-Estrella, A. 1998. Analysis of the beta-1,3-glucanolytic system of the biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol.64, 1442–1446.

    PubMed  CAS  Google Scholar 

  • Vega, F.E., Simpkins, A., Aime, M.C., Posada, F., Peterson, S.W., Rehner, S.A., Infante, F., Castillo, A., and Arnold, A.E. 2010. Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecol.3, 122–138.

    Article  Google Scholar 

  • Wang, B., Priest, M.J., Davidson, A., Brubaker, C.L., Woods, M.J., and Burdon, J.J. 2007. Fungal endophytes of native Gossypium species in Australia. Mycol. Res.111, 347–354.

    Article  PubMed  Google Scholar 

  • White, T.J., Bruns, T.D., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J. (eds.), PCR Protocols: a guide to methods and applications. Academic Press, New York, N.Y., USA.

    Google Scholar 

  • White Jr, J.F. and Torres, M.S. 2010. Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol. Plant.138, 440–446.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z. and Rannala, B. 1997. Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. Mol. Biol. Evol.14, 717–724.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Mu, J., Feng, Y., Kang, Y., Zhang, J., Gu, P.J., Wang, Y., Ma, L.F., and Zhu, Y.H. 2009. Broad-spectrum antimicrobial epiphytic and endophytic fungi from marine organisms: isolation, bioassay and taxonomy. Mar. Drugs7, 97–112.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, D.X., Nagabhyru, P., and Schardl, C.L. 2009. Regulation of a chemical defense against herbivory produced by symbiotic fungi in grass plants. Plant Physiol.150, 1072–1082.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H.W., Song, Y.C., and Tan, R.X. 2006. Biology and chemistry of endophytes. Nat. Prod. Rep.23, 753–771.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, D. and Hyde, K.D. 2001. Host-specificity, host-exclusivity, and host-recurrence in saprobic fungi. Mycol. Res.105, 1449–1457.

    Article  Google Scholar 

  • Zubek, S., Piatek, K., Naks, P., Heise, W., Wayda, M., and Mleczko, M. 2010. Fungal root endophyte colonization of fern and lycophyte species from the Celaque National Park in Honduras. Am. Fern J.100, 126–136.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Vieira de Queiroz.

Additional information

Supplemental material for this article may be found at http://www.springer.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza Leite, T., Cnossen-Fassoni, A., Pereira, O.L. et al. Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques. J Microbiol. 51, 56–69 (2013). https://doi.org/10.1007/s12275-013-2356-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-2356-x

Keywords

Navigation