Skip to main content
Log in

Microbial fingerprinting detects unique bacterial communities in the faecal microbiota of rats with experimentally-induced colitis

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 30 June 2012

Abstract

An abnormal composition of the gut microbiota is believed to be associated with the pathogenesis of inflammatory bowel disease (IBD). We utilized terminal restriction fragment length polymorphism (T-RFLP) analysis to quantify faecal bacterial communities from rats with experimental colitis. Male Sprague Dawley rats (n=10/group) ingested 2% dextran sulfate sodium (DSS) or water for up to 7 days. Rats were killed and colonic tissues collected for histological analysis. Damage severity score in the distal colon was significantly greater (P<0.001) following DSS consumption compared to controls. T-RFLP faecal bacterial profiles generated with either MspI or CfoI revealed a significant difference (P<0.001) in community composition between healthy and colitic rats, with bacterial composition in healthy rats more variable than in rats with colitis. Operational taxonomic units (OTU: taxonomically related groups of bacteria) associated with either the healthy or colitic state were identified. OTU (116, 226, 360, and 948; CfoI) and (118 and 188; MspI) were strongly associated with untreated healthy rats, while OTU (94, 98, 174, and 384; CfoI) and (94 and 914; MspI) were predominantly associated with DSS-treated colitic rats. Phylogenetic OTU assignment suggested that Bacteroidales and Lactobacillus sp. were predominantly associated with the colitic and healthy rats, respectively. These results show that faecal bacterial profiling is a rapid, sensitive and non-invasive tool for detecting and identifying changes in gut microbiota associated with colitis. Restoring microbial homeostasis by targeting colitis-associated OTU through specific microbiological interventions could form the basis of novel therapeutic strategies for IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andoh, A., Sakata, S., Koizumi, Y., Mitsuyama, K., Fujiyama, Y., and Benno, Y. 2007. Terminal restriction fragment length polymorphism analysis of the diversity of fecal microbiota in patients with ulcerative colitis. Inflamm. Bowel Dis.13, 955–962.

    Article  PubMed  Google Scholar 

  • Bibiloni, R., Fedorak, R.N., Tannock, G.W., Madsen, K.L., Gionchetti, P., Campieri, M., De Simone, C., and Sartor, R.B. 2005. VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am. J. Gastroenterol.100, 1539–1546.

    Article  PubMed  Google Scholar 

  • Bjerketorp, J., Chiang, A.N.T., Hjort, K., Rosenquist, M., Liu, W.T., and Jansson, J.K. 2008. Rapid lab-on-a-chip profiling of human gut bacteria. J. Microbiol. Methods72, 82–90.

    Article  PubMed  CAS  Google Scholar 

  • Bousvaros, A., Morley, F.A., Pensabene, L., and Cucchiara, S. 2008. Research and clinical challenges in pediatric inflammatory bowel disease. Dig. Liver. Dis.40, 32–38.

    Article  PubMed  CAS  Google Scholar 

  • Bray, J.R. and Curtis, K.R. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr.27, 325–349.

    Article  Google Scholar 

  • Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Austr. J. Ecol.18, 117–143.

    Article  Google Scholar 

  • Clarke, K.R. and Warwick, R.M. 2001. Changes in marine communities: an approach to statistical analysis and interpretation. 2nd ed. Primer F Ltd., Plymouth, UK.

    Google Scholar 

  • Dethlefsen, L., Mcfall-Ngai, M., and Relman, D.A. 2007. An ecological and evolutionary perspectives on human microbe mutualism and disease. Nature449, 811–818.

    Article  PubMed  CAS  Google Scholar 

  • Dicksved, J., Floistrup, H., Bergstrom, A., Rosenquist, M., Pershagen, G., Scheynius, A., Roos, S., Alm, J.S., Engstrand, L., Braun-Fahrlander, C., andet al. 2007. Molecular fingerprinting of the fecal microbiota of children raised according to different lifestyles. Appl. Environ. Microbiol.73, 2284–2289.

    Article  PubMed  CAS  Google Scholar 

  • Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S.R., Nelson, K.E., and Relman, D.A. 2005. Diversity of the human intestinal microbial flora. Science308, 1635–1638.

    Article  PubMed  Google Scholar 

  • Egert, M., Marhan, S., Wagner, B., Scheu, S., and Friedrich, M.W. 2004. Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae). FEMS Microbiol. Ecol.48, 187–197.

    Article  PubMed  CAS  Google Scholar 

  • Fiocchi, C. 1998. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterol.155, 182–205.

    Article  Google Scholar 

  • Frank, D.N., Amand, A.L.S., Feldman, R.A., Boedeker, E.C., Harpaz, N., and Pace, N.R. 2007. Molecular phylogenetic characterization of microbial community imbalance in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA104, 13780–13785.

    Article  PubMed  CAS  Google Scholar 

  • Geier, M.S., Butler, R.N., Giffard, P.M., and Howarth, G.S. 2007. Lactobacillus fermentum BR11, a potential new probiotic, alleviates symptoms of colitis induced by dextran sulfate sodium (DSS) in rats. Int. J. Food Microbiol.114, 267–274.

    Article  PubMed  Google Scholar 

  • Gorbach, S.L., Nahas, L., Plaut, A.G., Weinstein, L., Patterson, J.F., and Levitan, R. 1968. Studies of intestinal microflora. V. Faecal microbial ecology in ulcerative colitis and regional enteritis: relationship to severity of disease and chemotherapy. Gastroenterol.54, 575–587.

    CAS  Google Scholar 

  • Hartley, M.G., Hudson, M.J., Swarbrick, E.T., Hill, M.J., Gent, A.E., Hellier, M.D., and Grace, R.H. 1992. The rectal mucosa associated microflora in patients with ulcerative colitis. J. Med. Microbiol.36, 33–39.

    Article  Google Scholar 

  • Heimesaat, M.M., Fischer, A., Siegmund, B., Kupz, A., Niebergall, J., Fuchs, D., Jahn, H.K., Freudenberg, M., Loddenkemper, C., Batra, A., andet al. 2007. Shifts towards proinflammatory intestinal bacteria aggravate acute murine colitis via toll like receptors 2 and 4. PLoS One2, e662.

    Article  PubMed  Google Scholar 

  • Kent, A.D., Smith, D.J., Benson, B.J., and Triplett, E.W. 2003. A web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl. Environ. Microbiol.69, 6768–6776.

    Article  PubMed  CAS  Google Scholar 

  • Kruskal, J.B. 1964. Multidimensional scaling by optimizing a goodness of fit to a nonmetric hypothesis. Psychometrics29, 1–28.

    Article  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115–175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics. John Wiley and Sons Inc., New York, USA.

    Google Scholar 

  • Lee, H.K., Kim, H.R., Mengoni, A., and Lee, D.H. 2008. Modified T-RFLP methods for taxonomic interpretation of T-RF. J. Microbiol. Biotechnol.18, 624–630.

    PubMed  Google Scholar 

  • Li, F., Hullar, M.A.J., and Lampe, J.W. 2007. Optimization of terminal restriction fragment polymorphism (TRFLP) analysis of human gut microbiota. J. Microbiol. Methods68, 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Lupp, C., Robertson, M.L., Wickham, M.E., Sekirov, I., Champion, O.L., Gaynor, E.C., and Finlay, B.B. 2007. Host mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell. Host Microbe 2, 119–129.

    Article  PubMed  CAS  Google Scholar 

  • Mai, V., Braden, C.R., Heckendorf, J., Pironis, B., and Hirshon, J.M. 2006. Monitoring of stool microbiota in subjects with diarrhea indicates distortions in composition. J. Clin. Microbiol.44, 4550–4552.

    Article  PubMed  Google Scholar 

  • Manichanh, C., Rigottier-Gois, L., Bonnaud, E., Gloux, K., Pelletier, E., Frangeul, L., Nalin, R., Jarrin, C., Chardon, P., Marteau, P., andet al. 2006. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut55, 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Marteau, P., Seksik, P., and Shanahan, F. 2003. Manipulation of the bacterial flora in inflammatory bowel disease. Best Pract. Res. Clin. Gastroenterol.17, 47–61.

    Article  PubMed  CAS  Google Scholar 

  • Munkholm, P., Langholz, E., Davidsen, M., and Binder, V. 1995. Disease activity courses in a regional cohort of Crohn’s disease patients. Scand. J. Gastroenterol.30, 699–706.

    Article  PubMed  CAS  Google Scholar 

  • Murthy, S.N., Cooper, H.S., Shim, H., Shah, R.S., Ibrahim, S.A., and Sedergran, D.J. 1993. Treatment of dextran sulphate sodium induced murine colitis by intracolonic cyclosporine. Dig. Dis. Sci.38, 1722–1734.

    Article  PubMed  CAS  Google Scholar 

  • Muyzer, G., Teske, A., Wirsen, C.O., and Jannasch, H.W. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol.164, 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Nagashima, K., Hisada, T., Sato, M., and Mochizuki, J. 2003. Application of new primer-enzyme combination to terminal restriction fragment length polymorphism profiling of bacterial populations in human feces. Appl. Environ. Microbiol.69, 1251–1262.

    Article  PubMed  CAS  Google Scholar 

  • Scanlan, P.D., Shanahan, F., O’Mahony, C., and Marchesi, J.R. 2006. Culture independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. J. Clin. Microbiol.44, 3980–3988.

    Article  PubMed  CAS  Google Scholar 

  • Sellon, R.K., Tonkonogy, S., Schultz, M., Dieleman, L.A., Grenther, W., Balish, E., Rennick, D.M., and Sartor, R.B. 1998. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin 10 deficient mice. Infect. Immun.66, 5224–5231.

    PubMed  CAS  Google Scholar 

  • Sepehri, S., Kotlowski, R., Bernstein, C.N., and Krause, D.O. 2007. Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease. Inflamm. Bowel. Dis.13, 675–683.

    Article  PubMed  Google Scholar 

  • Shepard, R.N. 1962. The analysis of proximities: multidimensional scaling with an unknown distance function: parts I and II. Psychometrics27, 125–140.

    Article  Google Scholar 

  • Shyu, C., Soule, T., Bent, S.J., Foster, J.A., and Forney, L.J. 2007. MiCA: A web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA Genes. J. Microb. Ecol.53, 562–570.

    Article  CAS  Google Scholar 

  • Steed, H., Macfarlane, G.T., and Macfarlane, S. 2008. Prebiotics, synbiotics and inflammatory bowel disease. Mol. Nutr. Food Res.52, 898–905.

    Article  PubMed  CAS  Google Scholar 

  • Stirling, G.R., Griffin, D., Ophel-Keller, K., McKay, A., Hartley, D., Curran, J., Stirling, A.M., Monsour, D., Winch, J., and Hardie, B. 2004. Combining an initial risk assessment process with DNA assays to improve prediction of soilborne diseases caused by root-knot nematode (Meloidogyne spp.) and Fusarrium oxysporum f. sp. lycopersici in the Queensland tomato industry. Aus. Plant Pathol.33, 285–293.

    Article  CAS  Google Scholar 

  • Strober, W., Fuss, I., and Mannon, P. 2007. The fundamental basis of inflammatory bowel disease. J. Clin. Invest.117, 514–521.

    Article  PubMed  CAS  Google Scholar 

  • Swidsinski, A., Loening-Baucke, V., Lochs, H., and Hale, L.P. 2005. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J. Gastroenterol.11, 1131–1140.

    PubMed  Google Scholar 

  • Takaishi, H., Matsuki, T., Nakazawa, A., Takada, T., Kado, S., Asahara, T., Kamada, N., Sakuraba, A., Yajima, T., Higuchi, H., andet al. 2008. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int. J. Med. Microbiol.298, 463–472.

    Article  PubMed  CAS  Google Scholar 

  • Tamboli, C.P., Neut, C., Desreumaux, P., and Colombel, J.F. 2004. Dysbiosis in inflammatory bowel disease. Gut53, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Tannock, G.W. 2007. What immunologists should know about bacterial communities of the human bowel. Semin. Immunol.19, 94–105.

    Article  PubMed  CAS  Google Scholar 

  • Taurog, J.D., Richardson, J.A., Croft, J.T., Simmons, W.A., Zhou, M., Fernandez-Sueiro, J.L., Balish, E., and Hammer, R.E. 1994. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med.180, 2359–2364.

    Article  PubMed  CAS  Google Scholar 

  • Tomas, F.M., Knowles, S.E., Owens, P.C., Read, L.C., Chandler, C.S., Gargosky, S.E., and Ballard, F.J. 1991. Increased weight gain, nitrogen retention and muscle protein synthesis following treatment of diabetic rats with insulin like growth factor (IGF)-1 and des (1–3) IGF-1. Biochem. J.276, 547–554.

    PubMed  CAS  Google Scholar 

  • Torok, V.A., Hughes, R.J., Ophel-Keller, K., Ali, M., and MacAlpine, R. 2009. Influence of different litter materials on cecal microbiota colonization in broiler chickens. Poult. Sci.88, 2474–2481.

    Article  PubMed  CAS  Google Scholar 

  • Torok, V.A., Ophel-Keller, K., Loo, M., and Hughes, R.J. 2008. Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Appl. Environ. Microbiol.74, 783–791.

    Article  PubMed  CAS  Google Scholar 

  • Widmer, F., Hartmann, M., Frey, B., and Kolliker, R. 2006. A novel strategy to extract specific phylogenetic sequence information from community T-RFLP. J. Microbiol. Methods66, 512–520.

    Article  PubMed  CAS  Google Scholar 

  • Xenoulis, P.G., Palculict, B., Allenspach, K., Steiner, J.M., Van House, A.M., and Suchodolski, J.S. 2008. Molecular phylogenetic characterization of microbial communities imbalances in the small intestine of dogs with inflammatory bowel disease. FEMS Microbiol. Ecol.66, 579–589.

    Article  PubMed  CAS  Google Scholar 

  • Yazbeck, R., Howarth, G.S., Geier, M.S., Demuth, H.U., and Abbott, C.A. 2008. Inhibiting dipeptidyl peptidase activity partially ameliorates colitis in mice. Front. Biosci.13, 6850–6858.

    Article  PubMed  CAS  Google Scholar 

  • Zoetendal, E.G., von Wright, A., Vilpponen-Salmela, T., Ben-Amor, K., Akkermans, A.D.L., and de Vos, W.M. 2002. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from faces. Appl. Environ. Microbiol.68, 3401–3407.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon S. Howarth.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samanta, A.K., Torok, V.A., Percy, N.J. et al. Microbial fingerprinting detects unique bacterial communities in the faecal microbiota of rats with experimentally-induced colitis. J Microbiol. 50, 218–225 (2012). https://doi.org/10.1007/s12275-012-1362-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-1362-8

Keywords

Navigation