Skip to main content
Log in

A genome-wide identification of genes potentially associated with host specificity of Brucella species

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Brucella species are facultative intracellular pathogenic α-Proteobacteria that can cause brucellosis in humans and domestic animals. The clinical and veterinary importance of the bacteria has led to well established studies on the molecular mechanisms of Brucella infection of host organisms. However, to date, no genome-wide study has scanned for genes related to the host specificity of Brucella spp. The majority of bacterial genes related to specific environmental adaptations such as host specificity are well-known to have evolved under positive selection pressure. We thus detected signals of positive selection for individual orthologous genes among Brucella genomes and identified genes related to host specificity. We first determined orthologous sets from seven completely sequenced Brucella genomes using the Reciprocal Best Hits (RBH). A maximum likelihood analysis based on the branch-site test was accomplished to examine the presence of positive selection signals, which was subsequently confirmed by phylogenetic analysis. Consequently, 12 out of 2,033 orthologous genes were positively selected by specific Brucella lineages, each of which belongs to a particular animal host. Extensive literature reviews revealed that half of these computationally identified genes are indeed involved in Brucella host specificity. We expect that this genome-wide approach based on positive selection may be reliably used to screen for genes related to environmental adaptation of a particular species and that it will provide a set of appropriate candidate genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Benjamini, Y. and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological). 57, 289–300.

    Google Scholar 

  • Bohlin, J., L. Snipen, A. Cloeckaert, K. Lagesen, D. Ussery, A.B. Kristoffersen, and J. Godfroid. 2010. Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods. BMC Evol. Biol. 10, 249.

    Article  PubMed  Google Scholar 

  • Boschiroli, M.L., V. Foulongne, and D. O’Callaghan. 2001. Brucellosis: a worldwide zoonosis. Curr. Opin. Microbiol. 4, 58–64.

    Article  PubMed  CAS  Google Scholar 

  • Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552.

    PubMed  CAS  Google Scholar 

  • Chain, P.S.G., D.J. Comerci, M.E. Tolmasky, F.W. Larimer, S.A. Malfatti, L.M. Vergez, F. Aguero, M.L. Land, R.A. Ugalde, and E. Garcia. 2005. Whole-genome analyses of speciation events in pathogenic Brucellae. Infect. Immun. 73, 8353–8361.

    Article  PubMed  CAS  Google Scholar 

  • Delrue, R.M., P. Lestrate, A. Tibor, J.J. Letesson, and X.D. Bolle. 2004. Brucella pathogenesis, genes identified from random large-scale screens. FEMS Micriobiol. Lett. 231, 1–12.

    Article  CAS  Google Scholar 

  • Delvecchio, V.G., V. Kapatral, R.J. Redkar, G. Patra, C. Mujer, T. Los, N. Ivanova, and et al. 2002. The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc. Natl. Acad. Sci. USA 99, 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Dobrindt, U., B. Hochhut, U. Hentschel, and J. Hacker. 2004. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2, 414–424.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Prada, C.M., E.B. Zelazowska, M. Nikolich, T.L. Hadfield, R.M. Roop II, G.L. Robertson, and D.L. Hoover. 2003. Interactions between Brucella melitensis and human phagocytes: bacterial surface O-polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect. Immun. 71, 2110–2119.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, W. and Z. Yang. 2010. The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. Mol. Biol. Evol. 27, 2257–2267.

    Article  PubMed  CAS  Google Scholar 

  • Foster, J.T., S.M. Beckstrom-Sternberg, T. Pearson, J.S. Beckstrom-Sternberg, P.S. Chain, F.F. Roberto, J. Hnath, T. Brettin, and P. Keim. 2009. Whole-genome-based phylogeny and divergence of the genus Brucella. J. Bacteriol. 191, 2864–2870.

    Article  PubMed  CAS  Google Scholar 

  • Haghjoo, E. and J.E. Galán. 2007. Identification of a transcriptional regulator that controls intracellular gene expression in Salmonella typhi. Mol. Microbiol. 64, 1549–1561.

    Article  PubMed  CAS  Google Scholar 

  • Halling, S.M., B.D. Peterson-Burch, B.J. Bricker, R.L. Zuerner, Z. Qing, L.L. Li, V. Kapur, D.P. Alt, and S.C. Olsen. 2005. Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J. Bacteriol. 187, 2715–2726.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K.M., S. Sung, G. Caetano-Anollés, J.Y. Han, and H. Kim. 2008. An approach of orthology detection from homologous sequences under minimum evolution. Nucleic Acids Res. 36, e110.

    Article  PubMed  Google Scholar 

  • Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • Lavigne, J.P., A.C. Vergunst, G. Bourg, and D. O’Callaghan. 2005. The IncP island in the genome Brucella suis 1330 was acquired by site-specific integration. Infect. Immun. 73, 7779–7783.

    Article  PubMed  CAS  Google Scholar 

  • Li, W.H., C.I. Wu, and C.C. Luo. 1985. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol. Biol. Evol. 2, 150–174.

    PubMed  Google Scholar 

  • Loytynoja, A. and N. Goldman. 2005. An algorithm for progressive multiple alignment of sequences with insertions. Proc. Natl. Acad. Sci. USA 102, 10557–10562.

    Article  PubMed  Google Scholar 

  • Michaux-Charachon, S., E. Jumans-Bilak, A. Allardet-Servent, G. Bourg, M.L. Boschiroli, M. Ramuz, and D. O’Callaghan. 2002. The Brucella genome at the beginning of the post-genomic era. Vet. Microbiol. 90, 581–585.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, E., A. Cloeckaert, and I. Moriyon. 2002. Brucella evolution and taxonomy. Vet. Microbiol. 90, 209–227.

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Hagelsieb, G. and K. Latimer. 2008. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 24, 319–324.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T. 1992. The nearly neutral theory of molecular evolution. Ann. Rev. Ecol. Syst. 23, 263–286.

    Article  Google Scholar 

  • Osterman, B. and I. Moriyon. 2006. International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of Brucella: Minutes of the meeting, 17 September 2003, Pamplona, Spain. Int. J. Syst. Evol. Microbiol. 56, 1173–1175.

    Article  Google Scholar 

  • Pappas, G., N. Akritidis, M. Bosilkovski, and E. Tsianos. 2005. Brucellosis. N. Engl. J. Med. 352, 2325–2336.

    Article  PubMed  CAS  Google Scholar 

  • Paulsen, I.T., R. Seshadri, K.E. Nelson, J.A. Eisen, J.F. Heidelberg, T.D. Read, R.J. Dodson, and et al. 2002. The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc. Natl. Acad. Sci. USA 99, 13148–13153.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, L., J.P. Bollback, M. Dimmic, M. Hubisz, and R. Nielsen. 2007. Genes under positive selection in Escherichia coli. Genome Res. 17, 1336–1343.

    Article  PubMed  CAS  Google Scholar 

  • Picardeau, M., D.M. Bulach, C. Bouchier, R.L. Zuerner, N. Zidane, P.J. Wilson, S. Creno, and et al. 2008. Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS ONE 3, e1607.

    Article  PubMed  Google Scholar 

  • Porte, F., A. Naroeni, S. Ouahrani-Bettache, and J.P. Liautard. 2003. Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages. Infect. Immun. 71, 1481–1490.

    Article  PubMed  CAS  Google Scholar 

  • Rey, M.W., R. Ramaiya, B.A. Nelson, S.D. Brody-Karpin, E.J. Zaretsky, M. Tang, A.L. de Leon, and et al. 2004. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol. 5, r77.

    Article  PubMed  Google Scholar 

  • Roop II, R.M., J.M. Gaines, E.S. Anderson, C.C. Caswell, and D.W. Martin. 2009. Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host. Med. Microbiol. Immunol. 198, 221–238.

    Article  PubMed  Google Scholar 

  • Seleem, M.N., S.M. Boyle, and N. Sriranganathan. 2008. Brucella: a pathogen without classic virulence genes. Vet. Microbiol. 129, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Sung, J.M.L., D.H. Lloyd, and J.A. Lindsay. 2008. Staphylococcus aureus host specificity: comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology 154, 1949–1959.

    Article  PubMed  CAS  Google Scholar 

  • Suyama, M., D. Torrents, and P. Bork. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–612.

    Article  PubMed  CAS  Google Scholar 

  • Tsolis, R.M., R. Seshadri, R.L. Santos, F.J. Sangari, J.M.G. Lobo, M.F. de Jong, Q. Ren, and et al. 2009. Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism. PLoS ONE 4, e5519.

    Article  PubMed  Google Scholar 

  • Vizcaino, N., A. Cloeckaert, J.M. Verger, M. Grayon, and L. Fernandez-Lago. 2000. DNA polymorphism in the genus Brucella. Microbes Infect. 2, 1089–1100.

    Article  PubMed  CAS  Google Scholar 

  • Waldron, D.E. and J.A. Lindsay. 2006. Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J. Bacteriol. 188, 5578–5585.

    Article  PubMed  CAS  Google Scholar 

  • Watarai, M., H.L. Anderws, and R.R. Isberg. 2002. Formation of a fibrous structure on the surface of Legionella pneumophila associated with exposure of DotH and DotO proteins after intracellular growth. Mol. Microbiol. 39, 313–329.

    Article  Google Scholar 

  • Wattam, A.R., K.P. Williams, E.E. Snyder, N.F. Almeida, M. Shukla, A.W. Dickerman, O.R. Crasta, and et al. 2009. Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle. J. Bacteriol. 191, 3569–3579.

    Article  PubMed  CAS  Google Scholar 

  • Wong, W.S., Z. Yang, N. Goldman, and R. Nielsen. 2004. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168, 1041–1051.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556.

    PubMed  CAS  Google Scholar 

  • Yang, Z., R. Nielsen, N. Goldman, and A.M.K. Pedersen. 2000. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155, 431–449.

    PubMed  CAS  Google Scholar 

  • Zhang, J., R. Nielsen, and Z. Yang. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472–2479.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heebal Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K.M., Kim, KW., Sung, S. et al. A genome-wide identification of genes potentially associated with host specificity of Brucella species. J Microbiol. 49, 768–775 (2011). https://doi.org/10.1007/s12275-011-1084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-1084-3

Keywords

Navigation