Skip to main content
Log in

Surface reconstruction and structural transformation of two-dimensional Ni-Fe MOFs for oxygen evolution in seawater media

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a four-electron transfer reaction, oxygen evolution reaction (OER) is limited by large overpotential and slow kinetics. Here, we in-situ synthesized two-dimensional (2D) Ni-Fe metal-organic framework nanosheets on nickel foam (NixFe-TPA/NF, TPA = terephthalic acid) for oxygen evolution in alkaline and alkaline seawater electrolytes. In 1 M KOH, Ni3Fe-TPA/NF shows a low overpotential (η10) of 189 mV at 10 mA·cm−2 and an ultra-low overpotential of only 260 mV at 500 mA·cm−2. In alkaline seawater, Ni3Fe-TPA/NF still provides impressive OER performance, with an η10 of 265 mV. In-situ Raman characterization results show that the phase transition occurs during the OER, and Ni3FeOOH with more oxygen vacancies is in-situ formed, reducing the OER energy barrier. Density functional theory (DFT) reveals that the synergy between Ni and Fe reduces the energy barrier and accelerates the rate-determining step. In addition, the ultra-thin 2D sheet structure and the close combination of Ni3FeOOH and highly conductive NF support ensure the high catalytic OER activity. Therefore, the surface reconstruction and structural modification strategy can be used to design and prepare high-performance OER electrocatalysts for energy-related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han, J. Y.; Guan, J. Q. Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution. Nano Res. 2023, 16, 1913–1966.

    CAS  ADS  Google Scholar 

  2. Huang, Z. D.; Feng, C.; Sun, J. P.; Xu, B.; Huang, T. X.; Wang, X. K.; Dai, F. N.; Sun, D. F. Ultrathin metal-organic framework nanosheets-derived yolk–shell Ni0.85Se@NC with rich Se-vacancies for enhanced water electrolysis. CCS Chem. 2021, 3, 2696–2711.

    CAS  Google Scholar 

  3. Han, J. Y.; Niu, X. D.; Guan, J. Q. Unveiling the role of defects in iron oxyhydroxide for oxygen evolution. J. Colloid Interface Sci. 2023, 635, 167–175.

    CAS  PubMed  ADS  Google Scholar 

  4. Xiao, K.; Wang, Y. F.; Wu, P. Y.; Hou, L. P.; Liu, Z. Q. Activating lattice oxygen in spinel ZnCo2O4 through filling oxygen vacancies with fluorine for electrocatalytic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202301408.

    CAS  Google Scholar 

  5. Han, W. K.; Wei, J. X.; Xiao, K.; Ouyang, T.; Peng, X. W.; Zhao, S. L.; Liu, Z. Q. Activating lattice oxygen in layered lithium oxides through cation vacancies for enhanced urea electrolysis. Angew. Chem., Int. Ed. 2022, 67, e202206050.

    ADS  Google Scholar 

  6. Bai, X.; Fan, Y.; Hou, C. M.; Tang, T. M.; Guan, J. Q. Partial crystallization of Co-Fe oxyhydroxides towards enhanced oxygen evolution activity. Int. J. Hydrogen Energy 2022, 47, 16711–16718.

    CAS  Google Scholar 

  7. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 736, 6744–6753.

    Google Scholar 

  8. Deng, J.; Nellist, M. R.; Stevens, M. B.; Dette, C.; Wang, Y.; Boettcher, S. W. Morphology dynamics of single-layered Ni(OH)2/NiOOH nanosheets and subsequent Fe incorporation studied by in situ electrochemical atomic force microscopy. Nano Lett. 2107, 77, 6922–6926.

    Google Scholar 

  9. Hu, J.; Liang, Y. Q.; Wu, S. L.; Li, Z. Y.; Shi, C. S.; Luo, S. Y.; Sun, H. J.; Zhu, S. L.; Cui, Z. D. Hierarchical nickle-iron layered double hydroxide composite electrocatalyst for efficient oxygen evolution reaction. Mater. Today Nano 2022, 17, 100150.

    CAS  Google Scholar 

  10. Wang, H. Y.; Chen, L. Y.; Tan, L.; Liu, X. E.; Wen, Y. H.; Hou, W. G.; Zhan, T. R. Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting. J. Colloid Interface Sci. 2022, 613, 349–358.

    CAS  PubMed  ADS  Google Scholar 

  11. Park, Y. S.; Lee, J.; Jang, M. J.; Yang, J. C.; Jeong, J.; Park, J.; Kim, Y.; Seo, M. H.; Chen, Z. W.; Choi, S. M. High-performance anion exchange membrane alkaline seawater electrolysis. J. Mater. Chem. A 2021, 9, 9586–9592.

    CAS  Google Scholar 

  12. Xiao, K.; Lin, R. T.; Wei, J. X.; Li, N.; Li, H.; Ma, T. Y.; Liu, Z. Q. Electrochemical disproportionation strategy to in-situ fill cation vacancies with Ru single atoms. Nano Res. 2022, 15, 4980–4985.

    CAS  ADS  Google Scholar 

  13. Chang, J. F.; Wang, G. Z.; Yang, Z. Z.; Li, B. Y.; Wang, Q.; Kuliiev, R.; Orlovskaya, N.; Gu, M.; Du, Y. G.; Wang, G. F. et al. Dual-doping and synergism toward high-performance seawater electrolysis. Adv. Mater. 2021, 33, 2101425.

    CAS  Google Scholar 

  14. Song, Y. Y.; Sun, M. Z.; Zhang, S. C.; Zhang, X. Y.; Yi, P.; Liu, J. Z.; Huang, B. L.; Huang, M. H.; Zhang, L. X. Alleviating the work function of vein-like CoxP by Cr doping for enhanced seawater electrolysis. Adv. Funct. Mater. 2023, 33, 2214081.

    CAS  Google Scholar 

  15. Khan, M. A.; Al-Attas, T.; Roy, S.; Rahman, M. M.; Ghaffour, N.; Thangadurai, V.; Larter, S.; Hu, J. G.; Ajayan, P. M.; Kibria, M. G. Seawater electrolysis for hydrogen production: A solution looking for a problem. Energy Environ. Sci. 2021, 14, 4831–4839.

    CAS  Google Scholar 

  16. Song, H. J.; Yoon, H.; Ju, B.; Lee, D. Y.; Kim, D. W. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1−xFexP2O7 nanoparticles for alkaline seawater electrolysis. ACS Catal. 2020, 10, 702–709.

    CAS  Google Scholar 

  17. Feng, S. Y.; Gu, C. S.; Yu, Y. H.; Rao, P.; Deng, P. L.; Li, J.; Kang, Z. Y.; Tian, X. L.; Wu, Z. F. A two-dimensional heterogeneous structured Ni3Se2@MoO3 catalyst for seawater electrolysis. J. Mater. Chem. A 2023, 11, 11740–11747.

    CAS  Google Scholar 

  18. Wang, C. Z.; Zhu, M. Z.; Cao, Z. Y.; Zhu, P.; Cao, Y. Q.; Xu, X. Y.; Xu, C. X.; Yin, Z. Y. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Appl. Catal. B: Environ. 2021, 291, 120071.

    CAS  Google Scholar 

  19. Sun, H.; Sun, J. K.; Song, Y. Y.; Zhang, Y. F.; Qiu, Y.; Sun, M. X.; Tian, X. Y.; Li, C. Y.; Lv, Z.; Zhang, L. X. Nickel-cobalt hydrogen phosphate on nickel nitride supported on nickel foam for alkaline seawater electrolysis. ACS Appl. Mater. Interfaces 2022, 14, 22061–22070.

    CAS  PubMed  Google Scholar 

  20. Jiang, N.; Meng, H. M.; Song, L. J.; Yu, H. Y. Study on Ni-Fe-C cathode for hydrogen evolution from seawater electrolysis. Int. J. Hydrogen Energy 2010, 35, 8056–8062.

    CAS  Google Scholar 

  21. Enkhtuvshin, E.; Kim, K. M.; Kim, Y. K.; Mihn, S.; Kim, S. J.; Jung, S. Y.; Thao, N. T. T.; Ali, G.; Akbar, M.; Chung, K. Y. et al. Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni-Fe-Al-Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis. J. Mater. Chem. A 2021, 9, 27332–27346.

    CAS  Google Scholar 

  22. Yin, X.; Hua, Y. N.; Gao, Z. Two-dimensional materials for high-performance oxygen evolution reaction: Fundamentals, recent progress, and improving strategies. CCS Chem. 2023, 1, 190–226.

    Google Scholar 

  23. Li, L.; Fang, Z. B.; Deng, W. Z.; Yi, J. D.; Wang, R.; Liu, T. F. Precise construction of stable bimetallic metal-organic frameworks with single-site Ti(IV) incorporation in nodes for efficient photocatalytic oxygen evolution. CCS Chem. 2022, 4, 2782–2792.

    CAS  Google Scholar 

  24. Tang, T. M.; Li, S. S.; Sun, J. R.; Wang, Z. L.; Guan, J. Q. Advances and challenges in two-dimensional materials for oxygen evolution. Nano Res. 2022, 15, 8714–8750.

    CAS  ADS  Google Scholar 

  25. Bai, X.; Guan, J. Q. MXenes for electrocatalysis applications: Modification and hybridization. Chin. J. Catal. 2022, 43, 2057–2090.

    CAS  Google Scholar 

  26. Xiao, L. Y.; Wang, Z. L.; Guan, J. Q. 2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coord. Chem. Rev. 2022, 472, 214777.

    CAS  Google Scholar 

  27. Lin, C.; He, X.; Li, H. Q.; Zou, J. J.; Que, M. L.; Tian, J. Y.; Qian, Y. Tunable metal-organic framework nanoarrays on carbon cloth constructed by a rational self-sacrificing template for efficient and robust oxygen evolution reactions. CrystEngComm 2021, 23, 7090–7096.

    CAS  Google Scholar 

  28. Meng, C. Q.; Cao, Y.; Luo, Y. L.; Zhang, F.; Kong, Q. Q.; Alshehri, A. A.; Alzahrani, K. A.; Li, T. S.; Liu, Q.; Sun, X. P. A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. Inorg. Chem. Front. 2021, 8, 3007–3011.

    CAS  Google Scholar 

  29. Huo, J. M.; Wang, Y.; Yan, L. T.; Xue, Y. Y.; Li, S. N.; Hu, M. C.; Jiang, Y. C.; Zhai, Q. G. In situ semi-transformation from heterometallic MOFs to Fe-Ni LDH/MOF hierarchical architectures for boosted oxygen evolution reaction. Nanoscale 2020, 12, 14514–14523.

    CAS  PubMed  Google Scholar 

  30. Kim, J. H.; Youn, D. H.; Kawashima, K.; Lin, J.; Lim, H.; Mullins, C. B. An active nanoporous Ni(Fe) OER electrocatalyst via selective dissolution of Cd in alkaline media. Appl. Catal. B: Environ. 2018, 225, 1–7.

    CAS  Google Scholar 

  31. Zhao, J. Z.; Wu, W. B.; Jia, X. Y.; Zhao, Z. L.; Hu, X. A coaxial three-layer (Ni,Fe)OxHy/Ni/Cu mesh electrode: Excellent oxygen evolution reaction activity for water electrolysis. Catal. Sci. Technol. 2020, 10, 1803–1808.

    CAS  Google Scholar 

  32. Liu, Y. K.; Jiang, S.; Li, S. J.; Zhou, L.; Li, Z. H.; Li, J. M.; Shao, M. F. Interface engineering of (Ni,Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B: Environ. 2019, 247, 107–114.

    CAS  Google Scholar 

  33. Tan, J. B.; He, X. B.; Yin, F. X.; Chen, B. H.; Liang, X.; Li, G. R.; Yin, H. Q. Fe doped metal organic framework (Ni)/carbon black nanosheet as highly active electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 21431–21441.

    CAS  Google Scholar 

  34. Kahnamouei, M. H.; Shahrokhian, S. Ultrafast two-step synthesis of S-doped Fe/Ni (oxy)hydroxide/Ni nanocone arrays on carbon cloth and stainless-steel substrates for water-splitting applications. ACS Appl. Energy Mater. 2021, 4, 10627–10638.

    CAS  Google Scholar 

  35. Liu, W. J.; Hu, X.; Li, H. C.; Yu, H. Q. Pseudocapacitive Ni-Co-Fe hydroxides/N-doped carbon nanoplates-based electrocatalyst for efficient oxygen evolution. Small 2018, 14, 1801878.

    ADS  Google Scholar 

  36. Qi, D. D.; Chen, X.; Liu, W. P.; Liu, C. X.; Liu, W. B.; Wang, K.; Jiang, J. Z. A Ni/Fe-based heterometallic phthalocyanine conjugated polymer for the oxygen evolution reaction. Inorg. Chem. Front. 2020, 7, 642–646.

    CAS  Google Scholar 

  37. Zheng, F. Q.; Zhang, Z. W.; Xiang, D.; Li, P.; Du, C.; Zhuang, Z. H.; Li, X. K.; Chen, W. Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential. J. Colloid Interface Sci. 2019, 555, 541–547.

    CAS  PubMed  ADS  Google Scholar 

  38. Chai, Y. M.; Shang, X.; Liu, Z. Z.; Dong, B.; Han, G. Q.; Gao, W. K.; Chi, J. Q.; Yan, K. L.; Liu, C. G. Ripple-like NiFeCo sulfides on nickel foam derived from in-situ sulfurization of precursor oxides as efficient anodes for water oxidation. Appl. Surf. Sci. 2018, 428, 370–376.

    CAS  ADS  Google Scholar 

  39. Xiao, C. H.; Zhang, B.; Li, D. Partial-sacrificial-template synthesis of Fe/Ni phosphides on Ni foam: A strongly stabilized and efficient catalyst for electrochemical water splitting. Electrochim. Acta 2017, 242, 260–267.

    CAS  Google Scholar 

  40. Wan, Z. X.; Yu, H. B.; He, Q. T.; Hu, Y.; Yan, P. X.; Shao, X.; Isimjan, T. T.; Zhang, B.; Yang, X. L. In-situ growth and electronic structure modulation of urchin-like Ni-Fe oxyhydroxide on nickel foam as robust bifunctional catalysts for overall water splitting. Int. J. Hydrogen Energy 2020, 45, 22427–22436.

    CAS  Google Scholar 

  41. Zhao, T.; Cheng, C.; Wang, D.; Zhong, D. Z.; Hao, G. Y.; Liu, G.; Li, J. P.; Zhao, Q. Preparation of a bimetallic NiFe-MOF on nickel foam as a highly efficient electrocatalyst for oxygen evolution reaction. ChemistrySelect 2021, 6, 1320–1327.

    CAS  Google Scholar 

  42. Yuan, J. X.; Cheng, X. D.; Lei, C. J.; Yang, B.; Li, Z. J.; Luo, K.; Lam, K. H. K.; Lei, L. C.; Hou, Y.; Ostrikov, K. K. Bimetallic oxyhydroxide as a high-performance water oxidation electrocatalyst under industry-relevant conditions. Engineering 2021, 7, 1306–1312.

    CAS  Google Scholar 

  43. Niu, S.; Tang, T.; Qu, Y. J.; Chen, Y. Y.; Luo, H.; Pan, H.; Jiang, W. J.; Zhang, J. N.; Hu, J. S. Mitigating the reconstruction of metal sulfides for ultrastable oxygen evolution at high current density. CCS Chem., in press, https://doi.org/10.31635/ccschem.023.202202663.

  44. Han, J. Y.; Zhang, M. Z.; Bai, X.; Duan, Z. Y.; Tang, T. M.; Guan, J. Q. Mesoporous Mn-Fe oxyhydroxides for oxygen evolution. Inorg. Chem. Front. 2022, 9, 3559–3565.

    CAS  Google Scholar 

  45. Zheng, Y. P.; Yu, D. H.; Xu, W.; Zhang, K.; Ma, K. L.; Guo, X. Y.; Lou, Y. B.; Hu, M. L. Robust FeCoP nanoparticles grown on a rGO-coated Ni foam as an efficient oxygen evolution catalyst for excellent alkaline and seawater electrolysis. Dalton Trans. 2023, 52, 3493–3500.

    CAS  PubMed  Google Scholar 

  46. Yang, L. J.; Feng, C.; Guan, C. D.; Zhu, L. J.; Xia, D. H. Construction of seaurchin-like structured Ag2Se-Ag2S-CoCH/NF electrocatalyst with high catalytic activity and corrosion resistance for seawater electrolysis. Appl. Surf. Sci. 2023, 607, 154885.

    CAS  Google Scholar 

  47. Yan, L.; Chen, X. W.; Liu, X. J.; Chen, L. P.; Zhang, B. In situ formed VOOH nanosheet arrays anchored on a Ti3C2Tx MXene as a highly efficient and robust synergistic electrocatalyst for boosting water oxidation and reduction. J. Mater. Chem. A 2020, 8, 23637–23644.

    CAS  Google Scholar 

  48. Chen, J. X.; Long, Q. W.; Xiao, K.; Ouyang, T.; Li, N.; Ye, S. Y.; Liu, Z. Q. Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction. Sci. Bull. 2021, 66, 1063–1072.

    CAS  Google Scholar 

  49. Xing, X. S.; Ren, X. F.; Zeng, X. Y.; Li, A.; Wang, Y. Q.; Zhou, Z. Y.; Guo, Y.; Wu, S. L.; Du, J. M. Accelerating oxygen evolution reaction kinetics by reconstructing layered and defective Ni3FeOOH/FeOOH in a hematite photoanode. Sol. RRL 2023, 7, 2201041.

    CAS  Google Scholar 

  50. Deng, Q.; Huangyang, X. Y.; Zhang, X.; Xiao, Z. H.; Zhou, W. B.; Wang, H. R.; Liu, H. Y.; Zhang, F.; Li, C. Z.; Wu, X. W. et al. Edge-rich multidimensional frame carbon as high-performance electrode material for vanadium redox flow batteries. Adv. Energy Mater. 2022, 12, 2103186.

    CAS  Google Scholar 

  51. Zhong, H. Y.; Wang, X. P.; Sun, G. X.; Tang, Y. X.; Tan, S. D.; He, Q.; Zhang, J.; Xiong, T.; Diao, C. Z.; Yu, Z. G. et al. Optimization of oxygen evolution activity by tuning eg band broadening in nickel oxyhydroxide. Energy Environ. Sci. 2023, 16, 641–652.

    CAS  Google Scholar 

  52. Cheng, F. P.; Li, Z. J.; Wang, L.; Yang, B.; Lu, J. G.; Lei, L. C.; Ma, T. Y.; Hou, Y. In situ identification of the electrocatalytic water oxidation behavior of a nickel-based metal-organic framework nanoarray. Mater. Horiz. 2021, 8, 556–564.

    CAS  PubMed  Google Scholar 

  53. Chen, J. D.; Zheng, F.; Zhang, S. J.; Fisher, A.; Zhou, Y.; Wang, Z. Y.; Li, Y. Y.; Xu, B. B.; Li, J. T.; Sun, S. G. Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342–11351.

    CAS  Google Scholar 

  54. Yan, P.; Liu, Q.; Zhang, H.; Qiu, L. C.; Wu, H. B.; Yu, X. Y. Deeply reconstructed hierarchical and defective NiOOH/FeOOH nanoboxes with accelerated kinetics for the oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 15586–15594.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22075099), the Natural Science Foundation of Jilin Province (Nos. 20220101051JC and 20200201395JC), and the Education Department of Jilin Province (Nos. JJKH20220967KJ and JJKH20220968CY).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuquan Bai, Zhenlu Wang or Jingqi Guan.

Electronic Supplementary Material

12274_2023_6088_MOESM1_ESM.pdf

Surface reconstruction and structural transformation of two-dimensional Ni-Fe MOFs for oxygen evolution in seawater media

Supplementary material, approximately 14.8 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Bai, X., Han, J. et al. Surface reconstruction and structural transformation of two-dimensional Ni-Fe MOFs for oxygen evolution in seawater media. Nano Res. 17, 2429–2437 (2024). https://doi.org/10.1007/s12274-023-6088-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6088-x

Keywords

Navigation