Skip to main content
Log in

Liquid-metals-induced formation of MXene/polyacrylamide composite organohydrogels for wearable flexible electronics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Organohydrogels have demonstrated superior environmental adaptability and frost resistance compared to conventional hydrogels, thereby prompting considerable interests in the development and design of innovative organohydrogels. Herein, we report an effective one-pot method for fabricating MXene/polyacrylamide (MXene/PAM) composite organohydrogel (MAOH) by employing Ga liquid metals (Ga LMs) as a highly reactive component in the induced free radical polymerization reaction, without the need for additional heating or cross-linking agents. This synthetic protocol addresses the time-consuming and organic solvent waste concerns associated with traditional solvent displacement methods for organohydrogel preparation. The incorporation of MXene not only highly enhances the conductivity but also confers improved mechanical properties of MAOH. The MAOH exhibits excellent environmental adaptability (> 7 d), sustained moisture retention, remarkable self-healing capabilities, and outstanding mechanical properties under low temperatures (−20 °C). It demonstrates exceptional performance in micro-motion monitoring, rapid response time (125 ms), superior stretchability, and a broad range of strains (0.3%–600%). Therefore, the designed MAOH has great potential for applications in diverse fields such as prosthetics, electronic skin, human–machine interaction, and smart terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim, H. R.; Kim, H. S.; Qazi, R.; Kwon, Y. T.; Jeong, J. W.; Yeo, W. H. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 2020, 32, 1901924.

    Article  CAS  Google Scholar 

  2. Dai, X. H.; Long, Y.; Jiang, B.; Guo, W. B.; Sha, W.; Wang, J. W.; Cong, Z. F.; Chen, J. W.; Wang, B. J.; Hu, W. G. Ultra-antifreeze, ultra-stretchable, transparent, and conductive hydrogel for multifunctional flexible electronics as strain sensor and triboelectric nanogenerator. Nano Res. 2022, 15, 5461–5468.

    Article  ADS  CAS  Google Scholar 

  3. Lai, Y. C.; Ye, B. W.; Lu, C. F.; Chen, C. T.; Jao, M. H.; Su, W. F.; Hung, W. Y.; Lin, T. Y.; Chen, Y. F. Extraordinarily sensitive and low-voltage operational cloth-based electronic skin for wearable sensing and multifunctional integration uses: A tactile-induced insulating-to-conducting transition. Adv. Funct. Mater. 2016, 26, 1286–1295.

    Article  CAS  Google Scholar 

  4. Luo, J. C.; Gao, S. J.; Luo, H.; Wang, L.; Huang, X. W.; Guo, Z.; Lai, X. J.; Lin, L. W.; Li, R. K. Y.; Gao, J. F. Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem. Eng. J. 2021, 406, 126898.

    Article  CAS  Google Scholar 

  5. Zhang, Y. J.; He, P.; Luo, M.; Xu, X. W.; Dai, G. Z.; Yang, J. L. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919–926.

    Article  CAS  Google Scholar 

  6. Zhou, K. K.; Dai, K.; Liu, C. T.; Shen, C. Y. Flexible conductive polymer composites for smart wearable strain sensors. Smartmat 2020, 1, 1010.

    Article  Google Scholar 

  7. Hou, C.; Xu, Z. J.; Qiu, W.; Wu, R. H.; Wang, Y. N.; Xu, Q. C.; Liu, X. Y.; Guo, W. X. A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection. Small 2019, 15, 1805084.

    Article  Google Scholar 

  8. Lim, Y. W.; Jin, J.; Bae, B. S. Optically transparent multiscale composite films for flexible and wearable electronics. Adv. Mater. 2020, 32, 1907143.

    Article  CAS  Google Scholar 

  9. Chen, S. W.; Wu, N.; Lin, S. Z.; Duan, J. J.; Xu, Z. S.; Pan, Y.; Zhang, H. B.; Xu, Z. H.; Huang, L.; Hu, B. et al. Hierarchical elastomer tuned self-powered pressure sensor for wearable multifunctional cardiovascular electronics. Nano Energy 2020, 70, 104460.

    Article  CAS  Google Scholar 

  10. Wang, L. R.; Xu, T. L.; Zhang, X. J. Multifunctional conductive hydrogel-based flexible wearable sensors. Trends Analyt. Chem. 2021, 134, 116130.

    Article  ADS  CAS  Google Scholar 

  11. Hao, S. W.; Shao, C. Y.; Meng, L.; Cui, C.; Xu, F.; Yang, J. Tannic acid-silver dual catalysis induced rapid polymerization of conductive hydrogel sensors with excellent stretchability, self-adhesion, and strain–sensitivity properties. ACS Appl. Mater. Interfaces 2020, 12, 56509–56521.

    Article  CAS  PubMed  Google Scholar 

  12. Xu, T. J.; Zhang, L.; Song, B. W.; Bai, X.; Huang, Z. X.; Bu, X. D.; Chen, T. T.; Fu, H.; Guo, P. P. High-strain sensitive zwitterionic hydrogels with swelling-resistant and controllable rehydration for sustainable wearable sensor. J. Colloid Interface Sci. 2022, 620, 14–23.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Zeng, W. J.; Jiang, C. G.; Wu, D. F. Heterogeneity regulation of bilayer polysaccharide hydrogels for integrating pH- and humidity-responsive actuators and sensors. ACS Appl. Mater. Interfaces 2023, 15, 16097–16108.

    Article  CAS  PubMed  Google Scholar 

  14. Li, S. N.; Zhou, X.; Dong, Y. M.; Li, J. H. Flexible self-repairing materials for wearable sensing applications: Elastomers and hydrogels. Macromol. Rapid Commun. 2020, 41, 2000444.

    Article  CAS  Google Scholar 

  15. Rong, Q. F.; Lei, W. W.; Chen, L.; Yin, Y. A.; Zhou, J. J.; Liu, M. J. Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew. Chem., Int. Ed. 2017, 56, 14159–14163.

    Article  CAS  Google Scholar 

  16. Han, L.; Liu, K. Z.; Wang, M. H.; Wang, K. F.; Fang, L. M.; Chen, H. T.; Zhou, J.; Lu, X. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv. Funct. Mater. 2018, 28, 1704195.

    Article  Google Scholar 

  17. Chen, M. Z.; Qian, X. Y.; Cai, J.; Zhou, J. P.; Lu, A. Electronic skin based on cellulose/KCl/sorbitol organohydrogel. Carbohydr. Polym. 2022, 292, 119645.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang, C. G.; Ding, X. X.; Xie, W. Y.; Wu, D. F. Ultrastretchable composite organohydrogels with dual cross-links enabling multimodal sensing. ACS Appl. Mater. Interfaces 2022, 14, 55143–55154.

    Article  CAS  PubMed  Google Scholar 

  19. Kong, W. Q.; Wang, C. W.; Jia, C.; Kuang, Y. D.; Pastel, G.; Chen, C. J.; Chen, G. G.; He, S. M.; Huang, H.; Zhang, J. H. et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 2018, 30, 1801934.

    Article  Google Scholar 

  20. Wang, Y.; Zhang, L. N.; Lu, A. Transparent, antifreezing, ionic conductive cellulose hydrogel with stable sensitivity at subzero temperature. ACS Appl. Mater. Interfaces 2019, 11, 41710–41716.

    Article  CAS  PubMed  Google Scholar 

  21. Dang, C.; Wang, M.; Yu, J.; Chen, Y. A.; Zhou, S. H.; Feng, X.; Liu, D. T.; Qi, H. S. Transparent, highly stretchable, rehealable, sensing, and fully recyclable ionic conductors fabricated by one-step polymerization based on a small biological molecule. Adv. Funct. Mater. 2019, 29, 1902467.

    Article  Google Scholar 

  22. Sun, H. L.; Zhao, Y.; Jiao, S. L.; Wang, C. F.; Jia, Y. P.; Dai, K.; Zheng, G. Q.; Liu, C. T.; Wan, P. B.; Shen, C. Y. Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv. Funct. Mater. 2021, 31, 2101696.

    Article  CAS  Google Scholar 

  23. Xia, S.; Song, S. X.; Gao, G. H. Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion. Chem. Eng. J. 2018, 354, 817–824.

    Article  CAS  Google Scholar 

  24. Wu, J.; Huang, W. X.; Wu, Z. X.; Yang, X.; Kottapalli, A. G. P.; Xie, X.; Zhou, Y. B.; Tao, K. Hydrophobic and stable graphene-modified organohydrogel based sensitive, stretchable, and self-healable strain sensors for human-motion detection in various scenarios. ACS Mater. Lett. 2022, 4, 1616–1629.

    Article  CAS  Google Scholar 

  25. Liu, J.; Chen, Z.; Chen, Y. J.; Rehman, H. U.; Guo, Y. T.; Li, H.; Liu, H. Z. Ionic conductive organohydrogels with dynamic pattern behavior and multi-environmental stability. Adv. Funct. Mater. 2021, 31, 2101464.

    Article  CAS  Google Scholar 

  26. Zhan, X. Q.; Fu, Q.; Ran, Z. Q.; Chen, H.; Ma, N.; Tsai, F. C. Self-recoverable, highly adhesive, anti-freezing/drying, organohydrogel stretchable sensors. Appl. Mater. Today 2023, 31, 101777.

    Article  Google Scholar 

  27. Liao, H.; Guo, X. L.; Wan, P. B.; Yu, G. H. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater. 2019, 29, 1904507.

    Article  Google Scholar 

  28. Guo, R.; Han, X. Y.; Yuan, P.; He, X. X.; Li, Q.; Sun, J.; Dang, L. Q.; Liu, Z. H.; Zhang, Y. T.; Lei, Z. B. Filling Ti3C2Tx nanosheets into melamine foam towards a highly compressible all-in-one supercapacitor. Nano Res. 2022, 15, 3254–3263.

    Article  ADS  CAS  Google Scholar 

  29. Zhang, Y. Z.; El-Demellawi, J. K.; Jiang, Q.; Ge, G.; Liang, H. F.; Lee, K.; Dong, X. C.; Alshareef, H. N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020, 49, 7229–7251.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Y. F.; Gong, M.; Wan, P. B. MXene hydrogel for wearable electronics. Matter 2021, 4, 2655–2658.

    Article  CAS  Google Scholar 

  31. Li, S. N.; Yu, Z. R.; Guo, B. F.; Guo, K. Y.; Li, Y.; Gong, L. X.; Zhao, L.; Bae, J.; Tang, L. C. Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2Tx MXene hydrogels for wide-temperature strain sensing. Nano Energy 2021, 90, 106502.

    Article  CAS  Google Scholar 

  32. Xu, X. W.; Chen, Y. C.; He, P.; Wang, S.; Ling, K.; Liu, L. H.; Lei, P. F.; Huang, X. J.; Zhao, H.; Cao, J. Y. et al. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 2021, 14, 2875–2883.

    Article  ADS  CAS  Google Scholar 

  33. Chen, F.; Zhou, D.; Wang, J. H.; Li, T. Z.; Zhou, X. H.; Gan, T. S.; Handschuh-Wang, S.; Zhou, X. C. Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement. Angew. Chem., Int. Ed. 2018, 57, 6568–6571.

    Article  CAS  Google Scholar 

  34. Gao, H. N.; Zhao, Z. G.; Cai, Y. D.; Zhou, J. J.; Hua, W. D.; Chen, L.; Wang, L.; Zhang, J. Q.; Han, D.; Liu, M. J. et al. Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range. Nat. Commun. 2017, 8, 15911.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma, J.; Lin, Y. L.; Kim, Y. W.; Ko, Y.; Kim, J.; Oh, K. H.; Sun, J. Y.; Gorman, C. B.; Voinov, M. A.; Smirnov, A. I. et al. Liquid metal nanoparticles as initiators for radical polymerization of vinyl monomers. ACS Macro Lett. 2019, 8, 1522–1527.

    Article  CAS  PubMed  Google Scholar 

  36. Peng, H.; Xin, Y. M.; Xu, J.; Liu, H. Z.; Zhang, J. Y. Ultrastretchable hydrogels with reactive liquid metals as asymmetric forcesensors. Mater. Horiz. 2019, 6, 618–625.

    Article  CAS  Google Scholar 

  37. Chen, B.; Liu, G. L.; Wu, M. Y.; Cao, Y. D.; Zhong, H. B.; Shen, J. F.; Ye, M. X. Liquid metal-based organohydrogels for wearable flexible electronics. Adv. Mater. Technol. 2023, 8, 2201919.

    Article  CAS  Google Scholar 

  38. Xu, S.; Zong, Y.; Ma, J. Z.; Liu, L. P. A multifunctional skin-like sensor based on liquid metal activated gelatin organohydrogel. Adv. Mater. Interfaces 2022, 9, 2201212.

    Article  CAS  Google Scholar 

  39. Zhang, Z. X.; Tang, L.; Chen, C.; Yu, H. T.; Bai, H. H.; Wang, L.; Qin, M. M.; Feng, Y. Y.; Feng, W. Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. J. Mater. Chem. A 2021, 9, 875–883.

    Article  CAS  Google Scholar 

  40. Cademartiri, L.; Thuo, M. M.; Nijhuis, C. A.; Reus, W. F.; Tricard, S.; Barber, J. R.; Sodhi, R. N. S.; Brodersen, P.; Kim, C.; Chiechi, R. C. et al. Electrical resistance of AgTS-S(CH2)n−1CH3//Ga2O3/EGaIn tunneling junctions. J. Phys. Chem. C 2012, 116, 10848–10860.

    Article  CAS  Google Scholar 

  41. Park, J. E.; Kang, H. S.; Koo, M.; Park, C. Autonomous surface reconciliation of a liquid-metal conductor micropatterned on a deformable hydrogel. Adv. Mater. 2020, 32, 2002178.

    Article  CAS  Google Scholar 

  42. Rahim, M. A.; Centurion, F.; Han, J. L.; Abbasi, R.; Mayyas, M.; Sun, J.; Christoe, M. J.; Esrafilzadeh, D.; Allioux, F. M.; Ghasemian, M. B. et al. Polyphenol-induced adhesive liquid metal inks for substrate-independent direct pen writing. Adv. Funct. Mater. 2021, 31, 2007336.

    Article  CAS  Google Scholar 

  43. Wu, M. Y.; Zhang, Q.; Fang, Y. Y.; Deng, C.; Zhou, F. Z.; Zhang, Y.; Wang, X. D.; Tang, Y.; Wang, Y. J. Polylysine-modified MXene nanosheets with highly loaded glucose oxidase as cascade nanoreactor for glucose decomposition and electrochemical sensing. J. Colloid Interface Sci. 2021, 586, 20–29.

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Xu, H. T.; Xiao, R.; Huang, J. R.; Jiang, Y.; Zhao, C. X.; Yang, X. F. In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production. Chin. J. Catal. 2021, 42, 107–114.

    Article  Google Scholar 

  45. Zhi, W. Q.; Xiang, S. L.; Bian, R. J.; Lin, R. Z.; Wu, K. H.; Wang, T. W.; Cai, D. Y. Study of MXene-filled polyurethane nanocomposites prepared via an emulsion method. Compos. Sci. Technol. 2018, 168, 404–411.

    Article  CAS  Google Scholar 

  46. Wang, L. Y.; Gao, J. P.; An, Z. L.; Zhao, X. X.; Yao, H. D.; Zhang, M.; Tian, Q.; Zhai, X. G.; Liu, Y. Polymer microsphere for water-soluble drug delivery via carbon dot-stabilizing W/O emulsion. J. Mater. Sci. 2019, 54, 5160–5175.

    Article  ADS  CAS  Google Scholar 

  47. Chen, Z.; Chen, Y. J.; Hedenqvist, M. S.; Chen, C.; Cai, C.; Li, H.; Liu, H. Z.; Fu, J. Multifunctional conductive hydrogels and their applications as smart wearable devices. J. Mater. Chem. B 2021, 9, 2561–2583.

    Article  CAS  PubMed  Google Scholar 

  48. Cao, Y. D.; Chen, B.; Zhong, H. B.; Pei, L. Y.; Liu, G. L.; Xu, Z. L.; Shen, J. F.; Ye, M. X. Ti2C3Tx/polyurethane constructed by gas–liquid interface self-assembly for underwater sensing. ACS Appl. Mater. Interfaces 2022, 14, 24659–24667.

    Article  CAS  PubMed  Google Scholar 

  49. Wu, L.; Hu, Y. P.; Tang, P.; Wang, H.; Bin, Y. Z. High stretchable, pH-sensitive and self-adhesive rGO/CMCNa/PAA composite conductive hydrogel with good strain-sensing performance. Compos. Commun. 2021, 24, 100669.

    Article  Google Scholar 

  50. Zhang, J. F.; Xue, W.; Dai, Y. Q.; Wu, L.; Liao, B.; Zeng, W.; Tao, X. M. Double network hydrogel sensors with high sensitivity in large strain range. Macromol. Mater. Eng. 2021, 306, 2100486.

    Article  CAS  Google Scholar 

  51. Maleski, K.; Mochalin, V. N.; Gogotsi, Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 2017, 29, 1632–1640.

    Article  CAS  Google Scholar 

  52. Zhang, Q. X.; Lai, H. R.; Fan, R. Z.; Ji, P. Y.; Fu, X. L.; Li, H. High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 2021, 15, 5249–5262.

    Article  CAS  PubMed  Google Scholar 

  53. Kim, D.; Ko, T. Y.; Kim, H.; Lee, G. H.; Cho, S.; Koo, C. M. Nonpolar organic dispersion of 2D Ti3C2Tx MXene flakes via simultaneous interfacial chemical grafting and phase transfer method. ACS Nano 2019, 13, 13818–13828.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFA0209402) and the National Natural Science Foundation of China (Nos. 22088101, 22175132, and 22072028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yajun Wang or Yi Tang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Chen, B., Fan, X. et al. Liquid-metals-induced formation of MXene/polyacrylamide composite organohydrogels for wearable flexible electronics. Nano Res. 17, 1913–1922 (2024). https://doi.org/10.1007/s12274-023-6010-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6010-6

Keywords

Navigation