Skip to main content
Log in

Progress in self-powered sensors—Moving toward artificial intelligent and neuromorphic system

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Wearable and flexible electronics are shaping our life with their unique advantages of light weight, good compliance, and desirable comfortability. With marching into the era of Internet of Things (IoT), numerous sensor nodes are distributed throughout networks to capture, process, and transmit diverse sensory information, which gives rise to the demand on self-powered sensors to reduce the power consumption. Meanwhile, the rapid development of artificial intelligence (AI) and fifth-generation (5G) technologies provides an opportunity to enable smart-decision making and instantaneous data transmission in IoT systems. Due to continuously increased sensor and dataset number, conventional computing based on von Neumann architecture cannot meet the needs of brain-like high-efficient sensing and computing applications anymore. Neuromorphic electronics, drawing inspiration from the human brain, provide an alternative approach for efficient and low-power-consumption information processing. Hence, this review presents the general technology roadmap of self-powered sensors with detail discussion on their diversified applications in healthcare, human machine interactions, smart homes, etc. Via leveraging AI and virtual reality/augmented reality (VR/AR) techniques, the development of single sensors to intelligent integrated systems is reviewed in terms of step-by-step system integration and algorithm improvement. In order to realize efficient sensing and computing, brain-inspired neuromorphic electronics are next briefly discussed. Last, it concludes and highlights both challenges and opportunities from the aspects of materials, minimization, integration, multimodal information fusion, and artificial sensory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523–533.

    Article  CAS  Google Scholar 

  2. Shi, Q. F.; Dong, B. W.; He, T. Y. Y.; Sun, Z. D.; Zhu, J. X.; Zhang, Z. X.; Lee, C. Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and Internet of Things. InfoMat 2020, 2, 1131–1162.

    Article  Google Scholar 

  3. Ates, H. C.; Nguyen, P. Q.; Gonzalez-Macia, L.; Morales-Narváez, E.; Güder, F.; Collins, J. J.; Dincer, C. End-to-end design of wearable sensors. Nat. Rev. Mater. 2022, 7, 887–907.

    Article  Google Scholar 

  4. Yang, Y. Q.; Guo, X. G.; Zhu, M. L.; Sun, Z. D.; Zhang, Z. X.; He, T. Y. Y.; Lee, C. Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable Internet of Things integrated green earth. Adv. Energy Mater. 2023, 13, 2203040.

    Article  CAS  Google Scholar 

  5. Lim, H. R.; Kim, H. S.; Qazi, R.; Kwon, Y. T.; Jeong, J. W.; Yeo, W. H. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 2020, 32, 1901924.

    Article  CAS  Google Scholar 

  6. Hassani, F. A.; Shi, Q. F.; Wen, F.; He, T. Y. Y.; Haroun, A.; Yang, Y. Q.; Feng, Y. Q.; Lee, C. Smart materials for smart healthcare—Moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Mater. Med. 2020, 1, 92–124.

    Article  Google Scholar 

  7. Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635.

    Article  CAS  Google Scholar 

  8. He, T. Y. Y.; Wang, H.; Wang, J. H.; Tian, X.; Wen, F.; Shi, Q. F.; Ho, J. S.; Lee, C. Self-sustainable wearable textile nano-energy nano-system (NENS) for next-generation healthcare applications. Adv. Sci. 2019, 6, 1901437.

    Article  CAS  Google Scholar 

  9. Zhu, M. L.; He, T. Y. Y.; Lee, C. Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl. Phys. Rev. 2020, 7, 031305.

    Article  CAS  Google Scholar 

  10. Shi, Q. F.; Sun, Z. D.; Le, X. H.; Xie, J.; Lee, C. Soft robotic perception system with ultrasonic auto-positioning and multimodal sensory intelligence. ACS Nano 2023, 17, 4985–4998.

    Article  CAS  Google Scholar 

  11. Duan, S. S.; Shi, Q. F.; Hong, J. L.; Zhu, D.; Lin, Y. C.; Li, Y. H.; Lei, W.; Lee, C.; Wu, J. Water-modulated biomimetic hyper-attribute-gel electronic skin for robotics and skin-attachable wearables. ACS Nano 2023, 17, 1355–1371.

    Article  CAS  Google Scholar 

  12. Shi, Q. F.; Yang, Y. Q.; Sun, Z. D.; Lee, C. Progress of advanced devices and Internet of Things systems as enabling technologies for smart homes and health care. ACS Mater. Au 2022, 2, 394–435.

    Article  CAS  Google Scholar 

  13. Dong, B.; Shi, Q.; Yang, Y.; Wen, F.; Zhang, Z.; Lee, C. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 2021, 79, 105414.

    Article  CAS  Google Scholar 

  14. Al Mamun, M. A.; Yuce, M. R. Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications. Adv. Funct. Mater. 2020, 30, 2005703.

    Article  Google Scholar 

  15. Luo, Y. F.; Abidian, M. R.; Ahn, J. H.; Akinwande, D.; Andrews, A. M.; Antonietti, M.; Bao, Z. N.; Berggren, M.; Berkey, C. A.; Bettinger, C. J. et al. Technology roadmap for flexible sensors. ACS Nano 2023, 17, 5211–5295.

    Article  CAS  Google Scholar 

  16. Rim, Y. S.; Bae, S. H.; Chen, H. J.; De Marco, N.; Yang, Y. Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 2016, 28, 4415–4440.

    Article  CAS  Google Scholar 

  17. Mishra, R. B.; El-Atab, N.; Hussain, A. M.; Hussain, M. M. Recent progress on flexible capacitive pressure sensors: From design and materials to applications. Adv. Mater. Technol. 2021, 6, 2001023.

    Article  Google Scholar 

  18. Hu, Y. F.; Wang, Z. L. Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy 2015, 14, 3–14.

    Article  CAS  Google Scholar 

  19. Luo, J. J.; Wang, Z. L. Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat 2020, 2, e12059.

    Article  CAS  Google Scholar 

  20. Wang, Z. L. Triboelectric nanogenerator (TENG)—Sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.

    Article  CAS  Google Scholar 

  21. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  22. Liu, Z.; Zheng, Q.; Shi, Y.; Xu, L. L.; Zou, Y.; Jiang, D. J.; Shi, B. J.; Qu, X. C.; Li, H.; Ouyang, H. et al. Flexible and stretchable dual mode nanogenerator for rehabilitation monitoring and information interaction. J. Mater. Chem. B 2020, 8, 3647–3654.

    Article  CAS  Google Scholar 

  23. Li, Q.; Li, Z.; Meng, J. P. Pyro-phototronic effect enhanced self-powered photodetector. Int. J. Optomechatron. 2022, 16, 1–17.

    Article  Google Scholar 

  24. Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076.

    Article  Google Scholar 

  25. Wang, C.; Liu, Y.; Qu, X. C.; Shi, B. J.; Zheng, Q.; Lin, X. B.; Chao, S. Y.; Wang, C. Y.; Zhou, J.; Sun, Y. et al. Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber. Adv. Mater. 2022, 34, 2105416.

    Article  CAS  Google Scholar 

  26. Wang, C.; Qu, X. C.; Zheng, Q.; Liu, Y.; Tan, P. C.; Shi, B. J.; Ouyang, H.; Chao, S. Y.; Zou, Y.; Zhao, C. C. et al. Stretchable, self-healing, and skin-mounted active sensor for multipoint muscle function assessment. ACS Nano 2021, 15, 10130–10140.

    Article  CAS  Google Scholar 

  27. Lee, J. H.; Hinchet, R.; Kim, S. K.; Kim, S.; Kim, S. W. Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ. Sci. 2015, 8, 3605–3613.

    Article  CAS  Google Scholar 

  28. Zheng, Q.; Zou, Y.; Zhang, Y. L.; Liu, Z.; Shi, B. J.; Wang, X. X.; Jin, Y. M.; Ouyang, H.; Li, Z.; Wang, Z. L. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2016, 2, e1501478.

    Article  Google Scholar 

  29. Gu, G. Q.; Han, C. B.; Tian, J. J.; Lu, C. X.; He, C.; Jiang, T.; Li, Z.; Wang, Z. L. Antibacterial composite film-based triboelectric nanogenerator for harvesting walking energy. ACS Appl. Mater. Interfaces 2017, 9, 11882–11888.

    Article  CAS  Google Scholar 

  30. Yuan, W.; Zhang, C. G.; Zhang, B. F.; Wei, X. L.; Yang, O.; Liu, Y. B.; He, L. X.; Cui, S. N.; Wang, J.; Wang, Z. L. Wearable, breathable, and waterproof triboelectric nanogenerators for harvesting human motion and raindrop energy. Adv. Mater. Technol. 2022, 7, 2101139.

    Article  Google Scholar 

  31. Zhang, Z. X.; He, T. Y. Y.; Zhu, M. L.; Sun, Z. D.; Shi, Q. F.; Zhu, J. X.; Dong, B. W.; Yuce, M. R.; Lee, C. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. npj Flexible Electron. 2020, 4, 29.

    Article  CAS  Google Scholar 

  32. He, T. Y. Y.; Shi, Q. F.; Wang, H.; Wen, F.; Chen, T.; Ouyang, J. Y.; Lee, C. Beyond energy harvesting-multi-functional triboelectric nanosensors on a textile. Nano Energy 2019, 57, 338–352.

    Article  CAS  Google Scholar 

  33. Cao, R.; Pu, X. J.; Du, X. Y.; Yang, W.; Wang, J. N.; Guo, H. Y.; Zhao, S. Y.; Yuan, Z. Q.; Zhang, C.; Li, C. J. et al. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human-machine interaction. ACS Nano 2018, 12, 5190–5196.

    Article  CAS  Google Scholar 

  34. Wang, H. L.; Guo, Z. H.; Pu, X.; Wang, Z. L. Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nano-Micro Lett. 2022, 14, 86.

    Article  Google Scholar 

  35. Zhang, Z. X.; Wen, F.; Sun, Z. D.; Guo, X. G.; He, T. Y. Y.; Lee, C. Artificial intelligence-enabled sensing technologies in the 5G/Internet of Things era: From virtual reality/augmented reality to the digital twin. Adv. Intell. Syst. 2022, 4, 2100228.

    Article  Google Scholar 

  36. Huang, M. J.; Zhu, M. L.; Feng, X. W.; Zhang, Z. X.; Tang, T. Y.; Guo, X. G.; Chen, T.; Liu, H. C.; Sun, L. N.; Lee, C. Intelligent cubic-designed piezoelectric node (iCUPE) with simultaneous sensing and energy harvesting ability toward self-sustained artificial Intelligence of Things (AIoT). ACS Nano 2023, 17, 6435–6451.

    Article  CAS  Google Scholar 

  37. Luo, J. J.; Gao, W. C.; Wang, Z. L. The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 2021, 33, 2004178.

    Article  CAS  Google Scholar 

  38. Luo, J. J.; Wang, Z. M.; Xu, L.; Wang, A. C.; Han, K.; Jiang, T.; Lai, Q. S.; Bai, Y.; Tang, W.; Fan, F. R. et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 2019, 10, 5147.

    Article  Google Scholar 

  39. Zidan, M. A.; Strachan, J. P.; Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29.

    Article  Google Scholar 

  40. Bian, J. H.; Cao, Z. Y.; Zhou, P. Neuromorphic computing: Devices, hardware, and system application facilitated by two-dimensional materials. Appl. Phys. Rev. 2021, 8, 041313.

    Article  CAS  Google Scholar 

  41. Wan, C. J.; Cai, P. Q.; Wang, M.; Qian, Y.; Huang, W.; Chen, X. D. Artificial sensory memory. Adv. Mater. 2020, 32, 1902434.

    Article  CAS  Google Scholar 

  42. Park, H. L.; Lee, Y.; Kim, N.; Seo, D. G.; Go, G. T.; Lee, T. W. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv. Mater. 2020, 32, 1903558.

    Article  CAS  Google Scholar 

  43. Xu, X. J.; Cho, E. J.; Bekker, L.; Talin, A. A.; Lee, E.; Pascall, A. J.; Worsley, M. A.; Zhou, J.; Cook, C. C.; Kuntz, J. D. et al. A bioinspired artificial injury response system based on a robust polymer memristor to mimic a sense of pain, sign of injury, and healing. Adv. Sci. 2022, 9, 2200629.

    Article  Google Scholar 

  44. Wu, C. X.; Kim, T. W.; Park, J. H.; Koo, B.; Sung, S.; Shao, J. J.; Zhang, C.; Wang, Z. L. Self-powered tactile sensor with learning and memory. ACS Nano 2020, 14, 1390–1398.

    Article  CAS  Google Scholar 

  45. Sun, F. Q.; Lu, Q. F.; Feng, S. M.; Zhang, T. Flexible artificial sensory systems based on neuromorphic devices. ACS Nano 2021, 15, 3875–3899.

    Article  CAS  Google Scholar 

  46. Zeng, J. H.; Zhao, J. Q.; Bu, T. Z.; Liu, G. X.; Qi, Y. C.; Zhou, H.; Dong, S. C.; Zhang, C. A flexible tribotronic artificial synapse with bioinspired neurosensory behavior. Nano-Micro Lett. 2023, 15, 18.

    Article  CAS  Google Scholar 

  47. Zhang, Q.; Zhang, Z. X.; Liang, Q. J.; Shi, Q. F.; Zhu, M. L.; Lee, C. All in one, self-powered bionic artificial nerve based on a triboelectric nanogenerator. Adv. Sci. 2021, 8, 2004727.

    Article  CAS  Google Scholar 

  48. Yuan, R.; Duan, Q. X.; Tiw, P. J.; Li, G.; Xiao, Z. J.; Jing, Z. K.; Yang, K.; Liu, C.; Ge, C.; Huang, R. et al. A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system. Nat. Commun. 2022, 13, 3973.

    Article  CAS  Google Scholar 

  49. Wen, F.; Zhang, Z. X.; He, T. Y. Y.; Lee, C. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat. Commun. 2021, 12, 5378.

    Article  CAS  Google Scholar 

  50. Sun, Z. D.; Zhu, M. L.; Shan, X. C.; Lee, C. Augmented tactile-perception and haptic-feedback rings as human–machine interfaces aiming for immersive interactions. Nat. Commun. 2022, 13, 5224.

    Article  CAS  Google Scholar 

  51. Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y. D.; Lim, H.; Kim, S. Y.; Ko, H. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014, 8, 4689–4697.

    Article  CAS  Google Scholar 

  52. Yan, C. Y.; Wang, J. X.; Kang, W. B.; Cui, M. Q.; Wang, X.; Foo, C. Y.; Chee, K. J.; Lee, P. S. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 2014, 26, 2022–2027.

    Article  CAS  Google Scholar 

  53. Lai, Y. T.; Chen, Y. M.; Liu, T.; Yang, Y. J. A tactile sensing array with tunable sensing ranges using liquid crystal and carbon nanotubes composites. Sens. Actuators A: Phys. 2012, 177, 48–53.

    Article  CAS  Google Scholar 

  54. Gao, Y. J.; Ota, H.; Schaler, E. W.; Chen, K.; Zhao, A.; Gao, W.; Fahad, H. M.; Leng, Y. G.; Zheng, A. Z.; Xiong, F. R. et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv. Mater. 2017, 29, 1701985.

    Article  Google Scholar 

  55. Luo, Y. S.; Shao, J. Y.; Chen, S. R.; Chen, X. L.; Tian, H. M.; Li, X. M.; Wang, L.; Wang, D. R.; Lu, B. H. Flexible capacitive pressure sensor enhanced by tilted micropillar arrays. ACS Appl. Mater. Interfaces 2019, 11, 17796–17803.

    Article  CAS  Google Scholar 

  56. Matsuzaki, R.; Todoroki, A. Wireless flexible capacitive sensor based on ultra-flexible epoxy resin for strain measurement of automobile tires. Sens. Actuators A: Phys. 2007, 140, 32–42.

    Article  CAS  Google Scholar 

  57. Chen, X. L.; Shao, J. Y.; Tian, H. M.; Li, X. M.; Tian, Y. Z.; Wang, C. Flexible three-axial tactile sensors with microstructure-enhanced piezoelectric effect and specially-arranged piezoelectric arrays. Smart Mater. Struct. 2018, 27, 025018.

    Article  Google Scholar 

  58. Kingon, A. I.; Srinivasan, S. Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric, and piezoelectric applications. Nat. Mater. 2005, 4, 233–237.

    Article  CAS  Google Scholar 

  59. Zhang, H. R.; Tian, G.; Xiong, D.; Yang, T.; Zhong, S.; Jin, L.; Lan, B. L.; Deng, L.; Wang, S. L.; Sun, Y. et al. Understanding the enhancement mechanism of ZnO nanorod-based piezoelectric devices through surface engineering. ACS Appl. Mater. Interfaces 2022, 14, 29061–29069.

    Article  CAS  Google Scholar 

  60. Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature 2004, 432, 84–87.

    Article  CAS  Google Scholar 

  61. Chang, C.; Tran, V. H.; Wang, J. B.; Fuh, Y. K.; Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731.

    Article  CAS  Google Scholar 

  62. Varghese, H.; Hakkeem, H. M. A.; Chauhan, K.; Thouti, E.; Pillai, S.; Chandran, A. A high-performance flexible triboelectric nanogenerator based on cellulose acetate nanofibers and micropatterned PDMS films as mechanical energy harvester and self-powered vibrational sensor. Nano Energy 2022, 98, 107339.

    Article  CAS  Google Scholar 

  63. Zhang, B. B.; Zhang, L.; Deng, W. L.; Jin, L.; Chun, F.; Pan, H.; Gu, B. N.; Zhang, H. T.; Lv, Z. K.; Yang, W. Q. et al. Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring. ACS Nano 2017, 11, 7440–7446.

    Article  CAS  Google Scholar 

  64. Lee, S.; Wang, H.; Wang, J. H.; Shi, Q. F.; Yen, S. C.; Thakor, N. V.; Lee, C. Battery-free neuromodulator for peripheral nerve direct stimulation. Nano Energy 2018, 50, 148–158.

    Article  CAS  Google Scholar 

  65. He, T. Y. Y.; Lee, C. Evolving flexible sensors, wearable and implantable technologies towards bodyNET for advanced healthcare and reinforced life quality. IEEE Open J. Circuits Syst. 2021, 2, 702–720.

    Article  Google Scholar 

  66. Liao, W. Q.; Liu, X. K.; Li, Y. Q.; Xu, X.; Jiang, J. X.; Lu, S. R.; Bao, D. Q.; Wen, Z.; Sun, X. H. Transparent, stretchable, temperature-stable, and self-healing ionogel-based triboelectric nanogenerator for biomechanical energy collection. Nano Res. 2022, 15, 2060–2068.

    Article  CAS  Google Scholar 

  67. Yang, D.; Ni, Y. F.; Kong, X. X.; Li, S. Y.; Chen, X. Y.; Zhang, L. Q.; Wang, Z. L. Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment. ACS Nano 2021, 15, 14653–14661.

    Article  CAS  Google Scholar 

  68. Ouyang, H.; Li, Z.; Gu, M.; Hu, Y. R.; Xu, L. L.; Jiang, D. J.; Cheng, S. J.; Zou, Y.; Deng, Y.; Shi, B. J. et al. A bioresorbable dynamic pressure sensor for cardiovascular postoperative care. Adv. Mater. 2021, 33, 2102302.

    Article  CAS  Google Scholar 

  69. Li, H.; Zhao, C. C.; Wang, X. X.; Meng, J. P.; Zou, Y.; Noreen, S.; Zhao, L. M.; Liu, Z.; Ouyang, H.; Tan, P. C. et al. Fully bioabsorbable capacitor as an energy storage unit for implantable medical electronics. Adv. Sci. 2019, 6, 1801625.

    Article  Google Scholar 

  70. Li, Z.; Feng, H. Q.; Zheng, Q.; Li, H.; Zhao, C. C.; Ouyang, H.; Noreen, S.; Yu, M.; Su, F.; Liu, R. P. et al. Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing. Nano Energy 2018, 54, 390–399.

    Article  CAS  Google Scholar 

  71. Liu, Z.; Zhou, Y.; Qu, X. C.; Xu, L. L.; Zou, Y.; Shan, Y. Z.; Shao, J. W.; Wang, C.; Liu, Y.; Xue, J. T. et al. A self-powered optogenetic system for implantable blood glucose control. Research 2022, 2022, 9864734.

    Article  CAS  Google Scholar 

  72. Wang, C.; Shi, Q. F.; Lee, C. Advanced implantable biomedical devices enabled by triboelectric nanogenerators. Nanomaterials 2022, 12, 1366.

    Article  Google Scholar 

  73. Yang, D.; Ni, Y. F.; Su, H.; Shi, Y. X.; Liu, Q. M.; Chen, X. Y.; He, D. Y. Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator. Nano Energy 2021, 79, 105394.

    Article  CAS  Google Scholar 

  74. Jiang, D. J.; Shi, B. J.; Ouyang, H.; Fan, Y. B.; Wang, Z. L.; Li, Z. Emerging implantable energy harvesters and self-powered implantable medical electronics. ACS Nano 2020, 14, 6436–6448.

    Article  CAS  Google Scholar 

  75. Shi, Q. F.; Zhang, Z. X.; Yang, Y. Q.; Shan, X. C.; Salam, B.; Lee, C. Artificial Intelligence of Things (AIoT) enabled floor monitoring system for smart home applications. ACS Nano 2021, 15, 18312–18326.

    Article  CAS  Google Scholar 

  76. Zhou, J. K.; Zhang, Z. X.; Dong, B. W.; Ren, Z. H.; Liu, W. X.; Lee, C. Midinfrared spectroscopic analysis of aqueous mixtures using artificial-intelligence-enhanced metamaterial waveguide sensing platform. ACS Nano 2023, 17, 711–724.

    Article  CAS  Google Scholar 

  77. Anaya, D. V.; He, T. Y. Y.; Lee, C.; Yuce, M. R. Self-powered eye motion sensor based on triboelectric interaction and near-field electrostatic induction for wearable assistive technologies. Nano Energy 2020, 72, 104675.

    Article  Google Scholar 

  78. Qu, X. C.; Liu, Y.; Liu, Z.; Li, Z. Assistive devices for the people with disabilities enabled by triboelectric nanogenerators. J. Phys.: Mater. 2021, 4, 034015.

    CAS  Google Scholar 

  79. Zou, Y. J.; Raveendran, V.; Chen, J. Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 2020, 77, 105303.

    Article  CAS  Google Scholar 

  80. Zou, Y.; Tan, P. C.; Shi, B. J.; Ouyang, H.; Jiang, D. J.; Liu, Z.; Li, H.; Yu, M.; Wang, C.; Qu, X. C. et al. A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 2019, 10, 2695.

    Article  Google Scholar 

  81. Liu, Y.; Wang, C.; Xue, J. T.; Huang, G. H.; Zheng, S.; Zhao, K.; Huang, J.; Wang, Y. Q.; Zhang, Y.; Yin, T. L. et al. Body temperature enhanced adhesive, antibacterial, and recyclable ionic hydrogel for epidermal electrophysiological monitoring. Adv. Healthcare Mater. 2022, 11, 2200653.

    Article  CAS  Google Scholar 

  82. Pu, X. J.; Guo, H. Y.; Chen, J.; Wang, X.; Xi, Y.; Hu, C. G.; Wang, Z. L. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 2017, 3, e1700694.

    Article  Google Scholar 

  83. Guo, H. Y.; Pu, X. J.; Chen, J.; Meng, Y.; Yeh, M. H.; Liu, G. L.; Tang, Q.; Chen, B. D.; Liu, D.; Qi, S. et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 2018, 3, eaat2516.

    Article  Google Scholar 

  84. Wang, L. Y.; Bian, Y.; Lim, C. K.; Niu, Z. L.; Lee, P. K. H.; Chen, C.; Zhang, L.; Daoud, W. A.; Zi, Y. L. Tribo-charge enhanced hybrid air filter masks for efficient particulate matter capture with greatly extended service life. Nano Energy 2021, 85, 106015.

    Article  CAS  Google Scholar 

  85. Wang, M.; Zhang, J. H.; Tang, Y. J.; Li, J.; Zhang, B. S.; Liang, E. J.; Mao, Y. C.; Wang, X. D. Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano 2018, 12, 6156–6162.

    Article  CAS  Google Scholar 

  86. Lu, Q. X.; Chen, H.; Zeng, Y. M.; Xue, J. H.; Cao, X.; Wang, N.; Wang, Z. L. Intelligent facemask based on triboelectric nanogenerator for respiratory monitoring. Nano Energy 2022, 91, 106612.

    Article  CAS  Google Scholar 

  87. He, H. J.; Guo, J.; Illés, B.; Géczy, A.; Istók, B.; Hliva, V.; Török, D.; Kovács, J. G.; Harmati, I.; Molnár, K. Monitoring multi-respiratory indices via a smart nanofibrous mask filter based on a triboelectric nanogenerator. Nano Energy 2021, 89, 106418.

    Article  CAS  Google Scholar 

  88. Rajabi-Abhari, A.; Kim, J.-N.; Lee, J.; Tabassian, R.; Mahato, M.; Youn, H. J.; Lee, H.; Oh, I. K. Diatom bio-silica and cellulose nanofibril for bio-triboelectric nanogenerators and self-powered breath monitoring masks. ACS Appl. Mater. Interfaces 2021, 13, 219–232.

    Article  CAS  Google Scholar 

  89. Mariello, M.; Qualtieri, A.; Mele, G.; De Vittorio, M. Metal-free multilayer hybrid PENG based on soft electrospun/-sprayed membranes with cardanol additive for harvesting energy from surgical face masks. ACS Appl. Mater. Interfaces 2021, 13, 20606–20621.

    Article  CAS  Google Scholar 

  90. Liu, G. X.; Nie, J. H.; Han, C. B.; Jiang, T.; Yang, Z. W.; Pang, Y. K.; Xu, L.; Guo, T.; Bu, T. Z.; Zhang, C. et al. Self-powered electrostatic adsorption face mask based on a triboelectric nanogenerator. ACS Appl. Mater. Interfaces 2018, 10, 7126–7133.

    Article  CAS  Google Scholar 

  91. He, X.; Zou, H. Y.; Geng, Z. S.; Wang, X. F.; Ding, W. B.; Hu, F.; Zi, Y. L.; Xu, C.; Zhang, S. L.; Yu, H. et al. A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv. Funct. Mater. 2018, 28, 1805540.

    Article  Google Scholar 

  92. Gu, G. Q.; Han, C. B.; Lu, C. X.; He, C.; Jiang, T.; Gao, Z. L.; Li, C. J.; Wang, Z. L. Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal. ACS Nano 2017, 11, 6211–6217.

    Article  CAS  Google Scholar 

  93. Deng, W.; Sun, Y. J.; Yao, X. X.; Subramanian, K.; Ling, C.; Wang, H. B.; Chopra, S. S.; Xu, B. B.; Wang, J. X.; Chen, J. F. et al. Masks for COVID-19. Adv. Sci. 2022, 9, 2102189.

    Article  CAS  Google Scholar 

  94. Chen, D.; Tang, L. W.; Wang, Y. M.; Tan, Y. Y.; Fu, Y.; Cai, W. H.; Yu, Z. H.; Sun, S.; Zheng, J. Q.; Cui, J. Q. et al. Speaking-induced charge-laden face masks with durable protectiveness and wearing breathability. ACS Appl. Mater. Interfaces 2022, 14, 17774–17782.

    Article  CAS  Google Scholar 

  95. Bai, Y.; Han, C. B.; He, C.; Gu, G. Q.; Nie, J. H.; Shao, J. J.; Xiao, T. X.; Deng, C. R.; Wang, Z. L. Washable multilayer triboelectric air filter for efficient particulate matter PM2.5 removal. Adv. Funct. Mater. 2018, 28, 1706680.

    Article  Google Scholar 

  96. Ouyang, H.; Tian, J. J.; Sun, G. L.; Zou, Y.; Liu, Z.; Li, H.; Zhao, L. M.; Shi, B. J.; Fan, Y. B.; Fan, Y. F. et al. Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv. Mater. 2017, 29, 1703456.

    Article  Google Scholar 

  97. Zou, Y.; Gai, Y. S.; Tan, P. C.; Jiang, D. J.; Qu, X. C.; Xue, J. T.; Ouyang, H.; Shi, B. J.; Li, L. L.; Luo, D. et al. Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundam. Res. 2022, 2, 619–628.

    Article  Google Scholar 

  98. Zhu, M. L.; Shi, Q. F.; He, T. Y. Y.; Yi, Z. R.; Ma, Y. M.; Yang, B.; Chen, T.; Lee, C. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 2019, 13, 1940–1952.

    CAS  Google Scholar 

  99. Hinchet, R.; Yoon, H. J.; Ryu, H.; Kim, M. K.; Choi, E. K.; Kim, D. S.; Kim, S. W. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Scincee 2019, 365, 491–494.

    Article  CAS  Google Scholar 

  100. Zheng, Q.; Shi, B. J.; Fan, F. R.; Wang, X. X.; Yan, L.; Yuan, W. W.; Wang, S. H.; Liu, H.; Li, Z.; Wang, Z. L. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 2014, 26, 5851–5856.

    Article  CAS  Google Scholar 

  101. Lee, D. M.; Rubab, N.; Hyun, I.; Kang, W.; Kim, Y. J.; Kang, M.; Choi, B. O.; Kim, S. W. Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics. Sci. Adv. 2022, 8, eabl8423.

    Article  CAS  Google Scholar 

  102. Chen, C.; Wen, Z.; Shi, J. H.; Jian, X. H.; Li, P. Y.; Yeow, J. T. W.; Sun, X. H. Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 2020, 11, 4143.

    Article  CAS  Google Scholar 

  103. Li, J.; Kang, L.; Long, Y.; Wei, H.; Yu, Y. H.; Wang, Y. Z.; Ferreira, C. A.; Yao, G.; Zhang, Z. Y.; Carlos, C. et al. Implanted battery-free direct-current micro-power supply from in vivo breath energy harvesting. ACS Appl. Mater. Interfaces 2018, 10, 42030–42038.

    Article  CAS  Google Scholar 

  104. Shi, B. J.; Li, Z.; Fan, Y. B. Implantable energy-harvesting devices. Adv. Mater. 2018, 30, 1801511.

    Article  Google Scholar 

  105. Zheng, Q.; Zhang, H.; Shi, B. J.; Xue, X.; Liu, Z.; Jin, Y. M.; Ma, Y.; Zou, Y.; Wang, X. X.; An, Z. et al. In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 2016, 10, 6510–6518.

    Article  CAS  Google Scholar 

  106. Hassani, F. A.; Peh, W. Y. X.; Gammad, G. G. L.; Mogan, R. P.; Ng, T. K.; Kuo, T. L. C.; Ng, L. G.; Luu, P.; Yen, S. C.; Lee, C. A 3D printed implantable device for voiding the bladder using shape memory alloy (SMA) actuators. Adv. Sci. 2017, 4, 1700143.

    Article  Google Scholar 

  107. Yao, G.; Kang, L.; Li, J.; Long, Y.; Wei, H.; Ferreira, C. A.; Jeffery, J. J.; Lin, Y.; Cai, W. B.; Wang, X. D. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 2018, 9, 5349.

    Article  CAS  Google Scholar 

  108. Wang, J. H.; Wang, H.; Thakor, N. V.; Lee, C. Self-powered direct muscle stimulation using a triboelectric nanogenerator (TENG) integrated with a flexible multiple-channel intramuscular electrode. ACS Nano 2019, 13, 3589–3599.

    Article  CAS  Google Scholar 

  109. Zhao, C. C.; Feng, H. Q.; Zhang, L. J.; Li, Z.; Zou, Y.; Tan, P. C.; Ouyang, H.; Jiang, D. J.; Yu, M.; Wang, C. et al. Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator. Adv. Funct. Mater. 2019, 29, 1808640.

    Article  CAS  Google Scholar 

  110. Luo, R. Z.; Liang, Y.; Yang, J. R.; Feng, H. Q.; Chen, Y.; Jiang, X. P.; Zhang, Z.; Liu, J.; Bai, Y.; Xue, J. T. et al. Reshaping the endogenous electric field to boost wound repair via electrogenerative dressing. Adv. Mater. 2023, 35, 2208395.

    Article  CAS  Google Scholar 

  111. Zhao, C. C.; Shi, Q.; Li, H.; Cui, X.; Xi, Y.; Cao, Y.; Xiang, Z.; Li, F.; Sun, J. Y.; Liu, J. C. et al. Shape designed implanted drug delivery system for in situ hepatocellular carcinoma therapy. ACS Nano 2022, 16, 8493–8503.

    Article  CAS  Google Scholar 

  112. Zhao, L. M.; Gao, Z. B.; Liu, W.; Wang, C. L.; Luo, D.; Chao, S. Y.; Li, S. W.; Li, Z.; Wang, C. Y.; Zhou, J. Promoting maturation and contractile function of neonatal rat cardiomyocytes by self-powered implantable triboelectric nanogenerator. Nano Energy 2022, 103, 107798.

    Article  CAS  Google Scholar 

  113. Wang, C.; Hu, Y. R.; Liu, Y.; Shan, Y. Z.; Qu, X. C.; Xue, J. T.; He, T. Y. Y.; Cheng, S. J.; Zhou, H.; Liu, W. X. et al. Tissue-adhesive piezoelectric soft sensor for in vivo blood pressure monitoring during surgical operation. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202303696.

  114. Li, Z.; Zhu, G.; Yang, R. S.; Wang, A. C.; Wang, Z. L. Muscle-driven in vivo nanogenerator. Adv. Mater. 2010, 22, 2534–2537.

    Article  CAS  Google Scholar 

  115. Liu, Z.; Ma, Y.; Ouyang, H.; Shi, B. J.; Li, N.; Jiang, D. J.; Xie, F.; Qu, D.; Zou, Y.; Huang, Y. et al. Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv. Funct. Mater. 2019, 29, 1807560.

    Article  Google Scholar 

  116. Yang, Y.; Luo, R. Z.; Chao, S. Y.; Xue, J. T.; Jiang, D. J.; Feng, Y. H.; Guo, X. D.; Luo, D.; Zhang, J. P.; Li, Z. et al. Improved pharmacodynamics of epidermal growth factor via microneedles-based self-powered transcutaneous electrical stimulation. Nat. Commun. 2022, 13, 6908.

    Article  CAS  Google Scholar 

  117. Ouyang, H.; Liu, Z.; Li, N.; Shi, B. J.; Zou, Y.; Xie, F.; Ma, Y.; Li, Z.; Li, H.; Zheng, Q. et al. Symbiotic cardiac pacemaker. Nat. Commun 2019, 10, 1821.

    Article  Google Scholar 

  118. Wang, H.; Wang, J. H.; He, T. Y. Y.; Li, Z.; Lee, C. Direct muscle stimulation using diode-amplified triboelectric nanogenerators (TENGs). Nano Energy 2019, 63, 103844.

    Article  CAS  Google Scholar 

  119. Pyo, S.; Lee, J.; Bae, K.; Sim, S.; Kim, J. Recent progress in flexible tactile sensors for human-interactive systems: From sensors to advanced applications. Adv. Mater. 2021, 33, 2005902.

    Article  CAS  Google Scholar 

  120. Ding, W. B.; Wang, A. C.; Wu, C. S.; Guo, H. Y.; Wang, Z. L. Human-machine interfacing enabled by triboelectric nanogenerators and tribotronics. Adv. Mater. Technol. 2019, 4, 1800487.

    Article  Google Scholar 

  121. Zhang, R. Y.; Olin, H. Material choices for triboelectric nanogenerators: A critical review. EcoMat 2020, 2, e12062.

    Article  CAS  Google Scholar 

  122. Chen, T.; Zhao, M. Y.; Shi, Q. F.; Yang, Z.; Liu, H. C.; Sun, L. N.; Ouyang, J. Y.; Lee, C. Novel augmented reality interface using a self-powered triboelectric based virtual reality 3D-control sensor. Nano Energy 2018, 51, 162–172.

    Article  CAS  Google Scholar 

  123. Lee, Y. H.; Cha, S. H.; Kim, Y. W.; Choi, D.; Sun, J. Y. Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat. Commun. 2018, 9, 1804.

    Article  Google Scholar 

  124. Hinchet, R.; Shea, H. High force density textile electrostatic clutch. Adv. Mater. Technol. 2020, 5, 1900895.

    Article  CAS  Google Scholar 

  125. Wen, F.; Sun, Z. D.; He, T. Y. Y.; Shi, Q. F.; Zhu, M. L.; Zhang, Z. X.; Li, L. H.; Zhang, T.; Lee, C. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 2020, 7, 2000261.

    Article  CAS  Google Scholar 

  126. Zhu, M. L.; Sun, Z. D.; Lee, C. Soft modular glove with multimodal sensing and augmented haptic feedback enabled by materials’ multifunctionalities. ACS Nano 2022, 16, 14097–14110.

    Article  CAS  Google Scholar 

  127. Qiu, C. K.; Wu, F.; Lee, C.; Yuce, M. R. Self-powered control interface based on Gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications. Nano Energy 2020, 70, 104456.

    Article  CAS  Google Scholar 

  128. Pang, Y. K.; Chen, S. E.; Cao, Y. T.; Huang, Z. D.; Xu, X. C.; Fang, Y. H.; Cao, C. Y. Self-powered multifunctional human-machine interfaces for respiratory monitoring and smart system control. Adv. Mater. Interfaces 2022, 9, 2201202.

    Article  Google Scholar 

  129. Pu, X. J.; Tang, Q.; Chen, W. S.; Huang, Z. Y.; Liu, G. L.; Zeng, Q. X.; Chen, J.; Guo, H. Y.; Xin, L. M.; Hu, C. G. Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing. Nano Energy 2020, 76, 105047.

    Article  CAS  Google Scholar 

  130. Huo, X. Q.; Wei, X. L.; Wang, B. C.; Cao, X. L.; Xu, J. H.; Yin, J. X.; Wu, Z. Y.; Wang, Z. L. Intelligent electronic passworded locker with unique and personalized security barriers for home security. Nano Res. 2023, 16, 7568–7574.

    Article  Google Scholar 

  131. Zhou, Z. H.; Padgett, S.; Cai, Z. X.; Conta, G.; Wu, Y. F.; He, Q.; Zhang, S. L.; Sun, C. C.; Liu, J.; Fan, E. D. et al. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens. Bioelectron. 2020, 155, 112064.

    Article  CAS  Google Scholar 

  132. Zhang, N. N.; Li, Y. Z.; Xiang, S. W.; Guo, W. W.; Zhang, H.; Tao, C. Y.; Yang, S.; Fan, X. Imperceptible sleep monitoring bedding for remote sleep healthcare and early disease diagnosis. Nano Energy 2020, 72, 104664.

    Article  CAS  Google Scholar 

  133. Jiang, C. H. Z.; Lai, C. L.; Xu, B. G.; So, M. Y.; Li, Z. H. Fabric-rebound triboelectric nanogenerators with loops and layered structures for energy harvesting and intelligent wireless monitoring of human motions. Nano Energy 2022, 93, 106807.

    Article  CAS  Google Scholar 

  134. Shi, Q. F.; Zhang, Z. X.; He, T. Y. Y.; Sun, Z. D.; Wang, B. J.; Feng, Y. Q.; Shan, X. C.; Salam, B.; Lee, C. Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun. 2020, 11, 4609.

    Article  CAS  Google Scholar 

  135. Zhang, Z. X.; Shi, Q. F.; He, T. Y. Y.; Guo, X. G.; Dong, B. W.; Lee, J.; Lee, C. Artificial intelligence of toilet (AI-toilet) for an integrated health monitoring system (IHMS) using smart triboelectric pressure sensors and image sensor. Nano Energy 2021, 90, 106517.

    Article  CAS  Google Scholar 

  136. Kim, J.; Campbell, A. S.; de Ávila, B. E. F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406.

    Article  CAS  Google Scholar 

  137. Broza, Y. Y.; Zhou, X.; Yuan, M. M.; Qu, D. Y.; Zheng, Y. B.; Vishinkin, R.; Khatib, M.; Wu, W. W.; Haick, H. Disease detection with molecular biomarkers: From chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev. 2019, 119, 11761–11817.

    Article  CAS  Google Scholar 

  138. Ruiz-Valdepeñas Montiel, V.; Sempionatto, J. R.; Campuzano, S.; Pingarrón, J. M.; Esteban Fernández de Ávila, B.; Wang, J. Direct electrochemical biosensing in gastrointestinal fluids. Anal. Bioanal. Chem. 2019, 411, 4597–4604.

    Article  Google Scholar 

  139. Gai, Y. S.; Wang, E. G.; Liu, M. H.; Xie, L. R.; Bai, Y.; Yang, Y.; Xue, J. T.; Qu, X. C.; Xi, Y.; Li, L. L. et al. A self-powered wearable sensor for continuous wireless sweat monitoring. Small Methods 2022, 6, 2200653.

    Article  CAS  Google Scholar 

  140. Mostafalu, P.; Akbari, M.; Alberti, K. A.; Xu, Q. B.; Khademhosseini, A.; Sonkusale, S. R. A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsyst. Nanoeng. 2016, 2, 16039.

    Article  Google Scholar 

  141. Park, S. M.; Won, D. D.; Lee, B. J.; Escobedo, D.; Esteva, A.; Aalipour, A.; Ge, T. J.; Kim, J. H.; Suh, S.; Choi, E. H. et al. A mountable toilet system for personalized health monitoring via the analysis of excreta. Nat. Biomed. Eng. 2020, 4, 624–635.

    Article  Google Scholar 

  142. Yang, Y. R.; Song, Y.; Bo, X. J.; Min, J. H.; Pak, O. S.; Zhu, L. L.; Wang, M. Q.; Tu, J. B.; Kogan, A.; Zhang, H. X. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 2020, 38, 217–224.

    Article  CAS  Google Scholar 

  143. Haick, H.; Tang, N. Artificial intelligence in medical sensors for clinical decisions. ACS Nano 2021, 15, 3557–3567.

    Article  CAS  Google Scholar 

  144. Zhu, J. X.; Cho, M.; Li, Y. T.; He, T. Y. Y.; Ahn, J.; Park, J.; Ren, T. L.; Lee, C.; Park, I. Machine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application. Nano Energy 2021, 86, 106035.

    Article  CAS  Google Scholar 

  145. Song, Y.; Min, J. H.; Yu, Y.; Wang, H. B.; Yang, Y. R.; Zhang, H. X.; Gao, W. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 2020, 6, eaay9842.

    Article  CAS  Google Scholar 

  146. Su, Y. J.; Yao, M. L.; Xie, G. Z.; Pan, H.; Yuan, H.; Yang, M.; Tai, H. L.; Du, X. S.; Jiang, Y. D. Improving sensitivity of self-powered room temperature NO2 sensor by triboelectric-photoelectric coupling effect. Appl. Phys. Lett. 2019, 115, 073504.

    Article  Google Scholar 

  147. Luo, Y.; Zhao, T. M.; Dai, Y. T.; Li, Q.; Fu, H. Y. Flexible nanosensors for non-invasive creatinine detection based on triboelectric nanogenerator and enzymatic reaction. Sens. Actuators A: Phys. 2021, 320, 112585.

    Article  CAS  Google Scholar 

  148. Cui, S. W.; Zheng, Y. B.; Zhang, T. T.; Wang, D. A.; Zhou, F.; Liu, W. M. Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator. Nano Energy 2018, 49, 31–39.

    Article  CAS  Google Scholar 

  149. Zhu, J. X.; Ren, Z. H.; Lee, C. Toward healthcare diagnoses by machine-learning-enabled volatile organic compound identification. ACS Nano 2021, 15, 894–903.

    Article  CAS  Google Scholar 

  150. Zhu, J. X.; Sun, Z. D.; Xu, J. K.; Walczak, R. D.; Dziuban, J. A.; Lee, C. Volatile organic compounds sensing based on Bennet doubler-inspired triboelectric nanogenerator and machine learning-assisted ion mobility analysis. Sci. Bull. 2021, 66, 1176–1185.

    Article  CAS  Google Scholar 

  151. Cipresso, P.; Giglioli, I. A. C.; Raya, M. A.; Riva, G. The past, present, and future of virtual and augmented reality research: A network and cluster analysis of the literature. Front. Psychol. 2018, 9, 2086.

    Article  Google Scholar 

  152. Sun, Z. D.; Zhu, M. L.; Lee, C. Progress in the triboelectric human-machine interfaces (HMIs)—Moving from smart gloves to AI/haptic enabled HMI in the 5G/IoT era. Nanoenergy Adv. 2021, 1, 81–121.

    Article  Google Scholar 

  153. Sundaram, S.; Kellnhofer, P.; Li, Y. Z.; Zhu, J. Y.; Torralba, A.; Matusik, W. Learning the signatures of the human grasp using a scalable tactile glove. Nature 2019, 569, 698–702.

    Article  CAS  Google Scholar 

  154. Wen, F.; Wang, H.; He, T. Y. Y.; Shi, Q. F.; Sun, Z. D.; Zhu, M. L.; Zhang, Z. X.; Cao, Z. G.; Dai, Y. B.; Zhang, T. et al. Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy 2020, 67, 104266.

    Article  CAS  Google Scholar 

  155. Sun, Z. D.; Zhu, M. L.; Zhang, Z. X.; Chen, Z. C.; Shi, Q. F.; Shan, X. C.; Yeow, R. C. H.; Lee, C. Artificial Intelligence of Things (AIoT) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator. Adv. Sci. 2021, 8, 2100230.

    Article  Google Scholar 

  156. Guo, X. G.; He, T. Y. Y.; Zhang, Z. X.; Luo, A. X.; Wang, F.; Ng, E. J.; Zhu, Y.; Liu, H. C.; Lee, C. Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Nano 2021, 15, 19054–19069.

    Article  CAS  Google Scholar 

  157. Zhu, M. L.; Sun, Z. D.; Zhang, Z. X.; Shi, Q. F.; He, T. Y. Y.; Liu, H. C.; Chen, T.; Lee, C. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 2020, 6, eaaz8693.

    Article  CAS  Google Scholar 

  158. Yang, Y. Q.; Shi, Q. F.; Zhang, Z. X.; Shan, X. C.; Salam, B.; Lee, C. Robust triboelectric information-mat enhanced by multi-modality deep learning for smart home. InfoMat 2023, 5, e12360.

    Article  Google Scholar 

  159. Yang, X. X.; Yu, J. R.; Zhao, J.; Chen, Y. H.; Gao, G. Y.; Wang, Y. F.; Sun, Q. J.; Wang, Z. L. Mechanoplastic tribotronic floating-gate neuromorphic transistor. Adv. Funct. Mater. 2020, 30, 2002506.

    Article  CAS  Google Scholar 

  160. Chen, L. B.; Wen, C. Y.; Zhang, S. L.; Wang, Z. L.; Zhang, Z. B. Artificial tactile peripheral nervous system supported by self-powered transducers. Nano Energy 2021, 82, 105680.

    Article  CAS  Google Scholar 

  161. Chen, Q. Z.; Zhang, X. H.; Liu, Y. Q.; Yan, Y. J.; Yu, R. J.; Wang, X. M.; Lin, Z. N.; Zeng, H. A.; Liu, L. J.; Chen, H. P. et al. Neuromorphic display system for intelligent display. Nano Energy 2022, 94, 106931.

    Article  CAS  Google Scholar 

  162. Gupta, A. K.; Kumar, R. R.; Ghosh, A.; Lin, S. P. Perspective of smart self-powered neuromorphic sensor and their challenges towards artificial intelligence for next-generation technology. Mater. Lett. 2022, 310, 131541.

    Article  Google Scholar 

  163. Yu, J. R.; Gao, G. Y.; Huang, J. R.; Yang, X. X.; Han, J.; Zhang, H.; Chen, Y. H.; Zhao, C. L.; Sun, Q. J.; Wang, Z. L. Contact-electrification-activated artificial afferents at femtojoule energy. Nat. Commun. 2021, 12, 1581.

    Article  CAS  Google Scholar 

  164. Jia, M. M.; Guo, P. W.; Wang, W.; Yu, A. F.; Zhang, Y. F.; Wang, Z. L.; Zhai, J. Y. Tactile tribotronic reconfigurable p–n junctions for artificial synapses. Sci. Bull. 2022, 67, 803–812.

    Article  CAS  Google Scholar 

  165. Wu, X. M.; Li, E. L.; Liu, Y. Q.; Lin, W. K.; Yu, R. J.; Chen, G. X.; Hu, Y. Y.; Chen, H. P.; Guo, T. L. Artificial multisensory integration nervous system with haptic and iconic perception behaviors. Nano Energy 2021, 85, 106000.

    Article  CAS  Google Scholar 

  166. Ye, W. X.; Lin, J. M.; Zhang, X. H.; Lian, Q. M.; Liu, Y. Q.; Wang, H.; Wu, S. Y.; Chen, H. P.; Guo, T. L. Self-powered perception system based on triboelectric nanogenerator and artificial neuron for fast-speed multilevel feature recognition. Nano Energy 2022, 100, 107525.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Reimagine Research Scheme (RRSC) grant (“Scalable AI Phenome Platform towards Fast-Forward Plant Breeding (Sensor)”, Nos. A-0009037-02-00 and A-0009037-03-00) at NUS, Singapore; the Reimagine Research Scheme (RRSC) grant (“Under-utilised Potential of Micro-biomes (soil) in Sustainable Urban Agriculture”, No. A-0009454-01-00) at NUS, Singapore; and the RIE advanced manufacturing and engineering (AME) programmatic grant (“Nanosystems at the Edge”, No. A18A4b0055) at NUS, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengkuo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, F., Wang, C. & Lee, C. Progress in self-powered sensors—Moving toward artificial intelligent and neuromorphic system. Nano Res. 16, 11801–11821 (2023). https://doi.org/10.1007/s12274-023-5879-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5879-4

Keywords

Navigation