Skip to main content
Log in

The d-orbital regulation of isolated manganese sites for enhanced oxygen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing transition metal-nitrogen-carbon materials (M-N-C) as electrocatalysts for the oxygen evolution reaction (OER) is significant for low-cost energy conversion systems. Further d-orbital adjustment of M center in M-N-C is beneficial to the improvement of OER performance. Herein, we synthesize a single-Mn-atom catalyst based on carbon skeleton (Mn1-N2S2CX) with isolated Mn-N2S2 sites, which exhibits high alkaline OER activity (η10 = 280 mV), low Tafel slope (44 mV·dec−1), and excellent stability. Theoretical calculations reveal the pivotal function of isolated Mn-N2S2 sites in promoting OER, including the adsorption kinetics of intermediates and activation mechanism of active sites. The doping of S causes the increase in both charge density and work function of active Mn center, and ortho-Mn1-N2S2CX expresses the fastest OER kinetics due to the asymmetric plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, D. W.; Li, Q.; Han, C.; Xing, Z. C.; Yang, X. R. Single-atom ruthenium based catalyst for enhanced hydrogen evolution. Appl. Catal. B:Environ. 2019, 249, 91–97.

    CAS  Google Scholar 

  2. Meng, X. D.; Liu, X.; Fan, X. Y.; Chen, X.; Chen, S.; Meng, Y. Q.; Wang, M. Y.; Zhou, J.; Hong, S.; Zheng, L. et al. Single-atom catalyst aggregates: Size-matching is critical to electrocatalytic performance in sulfur cathodes. Adv. Sci. 2022, 9, 2103773.

    CAS  Google Scholar 

  3. Yin, P. Q.; You, B. Atom migration-trapping toward single-atom catalysts for energy electrocatalysis. Mater. Today Energy 2021, 19, 100586.

    CAS  Google Scholar 

  4. Li, Y.; Wang, H. H.; Priest, C.; Li, S. W.; Xu, P.; Wu, G. Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 2021, 33, 2000381.

    CAS  Google Scholar 

  5. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

    CAS  Google Scholar 

  6. Huang, Z. F.; Song, J. J.; Dou, S.; Li, X. G.; Wang, J.; Wang, X. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter 2019, 1, 1494–1518.

    Google Scholar 

  7. Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157.

    CAS  Google Scholar 

  8. Zhang, F. F.; Cheng, C. Q.; Wang, J. Q.; Shang, L.; Feng, Y.; Zhang, Y.; Mao, J.; Guo, Q. J.; Xie, Y. M.; Dong, C. K. et al. W. Iridium oxide modified with silver single atom for boosting oxygen evolution reaction in acidic media. ACS Energy Lett. 2021, 6, 1588–1595.

    CAS  Google Scholar 

  9. Tian, L.; Li, Z.; Xu, X. N.; Zhang, C. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. J. Mater. Chem. A 2021, 9, 13459–13470.

    CAS  Google Scholar 

  10. Yi, D.; Lu, F.; Zhang, F. C.; Liu, S. J.; Zhou, B.; Gao, D. L.; Wang, X.; Yao, J. N. Regulating charge transfer of lattice oxygen in single-atom-doped titania for hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 15855–15859.

    CAS  Google Scholar 

  11. Zhu, Y. Z.; Peng, W. C.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Modulating the electronic structure of single-atom catalysts on 2D nanomaterials for enhanced electrocatalytic performance. Small Methods 2019, 3, 1800438.

    Google Scholar 

  12. Maiti, K.; Maiti, S.; Curnan, M. T.; Kim, H. J.; Han, J. W. Engineering single atom catalysts to tune properties for electrochemical reduction and evolution reactions. Adv. Energy Mater. 2021, 11, 2101670.

    CAS  Google Scholar 

  13. Rao, P.; Wu, D. X.; Wang, T. J.; Li, J.; Deng, P. L.; Chen, Q.; Shen, Y. J.; Chen, Y.; Tian, X. L. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. eScience 2022, 2, 399–404.

    Google Scholar 

  14. Rao, P.; Wang, T. J.; Li, J.; Deng, P. L.; Shen, Y. J.; Chen, Y.; Tian, X. L. Plasma induced Fe-N active sites to improve the oxygen reduction reaction performance. Adv. Sensor Energy Mater. 2022, 1, 100005.

    Google Scholar 

  15. Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

    CAS  Google Scholar 

  16. Lu, T. T.; Wang, H. Graphdiyne-supported metal electrocatalysts: From nanoparticles and cluster to single atoms. Nano Res. 2022, 15, 9764–9778.

    CAS  Google Scholar 

  17. Feng, J. Q.; Gao, H. S.; Zheng, L. R.; Chen, Z. P.; Zeng, S. J.; Jiang, C. Y.; Dong, H. F.; Liu, L. C.; Zhang, S. J.; Zhang, X. P. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341.

    Google Scholar 

  18. Yang, Y.; Mao, K. T.; Gao, S. Q.; Huang, H.; Xia, G. L.; Lin, Z. Y.; Jiang, P.; Wang, C. L.; Wang, H.; Chen, Q. W. O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv. Matter. 2018, 30, 1801732.

    Google Scholar 

  19. Zhao, C. X.; Liu, J. N.; Wang, J.; Wang, C. D.; Guo, X.; Li, X. Y.; Chen, X.; Song, L.; Li, B. Q.; Zhang, Q. A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis. Sci. Adv., 2020, 8, eabn5091.

    Google Scholar 

  20. Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961–1965.

    CAS  Google Scholar 

  21. Li, L.; Chen, Y. J.; Xing, H. R.; Li, N.; Xia, J. W.; Qian, X. Y.; Xu, H.; Li, W. Z.; Yin, F. X.; He, G. Y. et al. Single-atom Fe-N5 catalyst for high-performance zinc-air batteries. Nano Res. 2022, 15, 8056–8064.

    CAS  Google Scholar 

  22. Peng, L. S.; Yang, J.; Yang, Y. Q.; Qian, F. R.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Mesopore-rich Fe-N-C catalyst with FeN4-O-NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 2022, 34, 2202544.

    CAS  Google Scholar 

  23. Lin, W. J.; Lu, Y. R.; Peng, W.; Luo, M.; Chan, T. S.; Tan, Y. W. Atomic bridging modulation of Ir-N, S co-doped MXene for accelerating hydrogen evolution. J. Mater. Chem. A 2022, 10, 9878–9885.

    CAS  Google Scholar 

  24. Hwang, J.; Noh, S. H.; Han, B. Design of active bifunctional electrocatalysts using single atom doped transition metal dichalcogenides. Appl. Surf. Sci. 2019, 471, 545–552.

    CAS  Google Scholar 

  25. Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

    CAS  Google Scholar 

  26. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    CAS  Google Scholar 

  27. Gu, J. X.; Magagula, S.; Zhao, J. X.; Chen, Z. F. Boosting ORR/OER activity of graphdiyne by simple heteroatom doping. Small Methods 2019, 3, 1800550.

    Google Scholar 

  28. Wang, M. W.; Cao, L.; Du, X.; Zhang, Y.; Jin, F. B.; Zhang, M. L.; Li, Z. H.; Su, K. M. Highly dispersed Co-, N-, S-doped topological defect-rich hollow carbon nanoboxes as superior bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. ACS Appl. Mater. Interfaces 2022, 14, 25427–25438.

    CAS  Google Scholar 

  29. Ruammaitree, A.; Nakahara, H.; Akimoto, K.; Soda, K.; Saito, Y. Determination of non-uniform graphene thickness on SiC(0001) by X-ray diffraction. Appl. Surf. Sci. 2013, 282, 297–301.

    CAS  Google Scholar 

  30. Seehra, M. S.; Narang, V.; Geddam, U. K.; Stefaniak, A. B. Correlation between X-ray diffraction and Raman spectra of 16 commercial grapheme-based materials and their resulting classification. Carbon 2017, 111, 380–385.

    CAS  Google Scholar 

  31. Schnegg, A.; Nehrkorn, J.; Singh, A.; Calafell, I. A.; Bonke, S. A.; Hocking, R. K.; Lips, K.; Spiccia, L. Probing the fate of Mn complexes in nafion: A combined multifrequency EPR and XAS study. J. Phys. Chem. C 2016, 120, 853–861.

    CAS  Google Scholar 

  32. Colmer, H. E.; Howcroft, A. W.; Jackson, T. A. Formation, characterization, and O–O bond activation of a peroxomanganese(III) complex supported by a cross-clamped cyclam ligand. Inorg. Chem. 2016, 55, 2055–2069.

    CAS  Google Scholar 

  33. He, M. R.; Li, X. J.; Liu, Y. H.; Li, J. F. Axial Mn–CCN bonds of cyano manganese(II) porphyrin complexes: Flexible and weak. Inorg. Chem. 2016, 55, 5871–5879.

    CAS  Google Scholar 

  34. Guan, J. Q.; Duan, Z. Y.; Zhang, F. X.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q. E.; Chen, J. Q.; Tang, C. H.; Li, C. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal. 2018, 1, 870–877.

    CAS  Google Scholar 

  35. Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.

    CAS  Google Scholar 

  36. Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

    CAS  Google Scholar 

  37. Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

    CAS  Google Scholar 

  38. Zhu, X. F.; Zhang, D. T.; Chen, C. J.; Zhang, Q. R.; Liu, R. S.; Xia, Z. H.; Dai, L. M.; Amal, R.; Lu, X. Y. Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 2020, 71, 104597.

    CAS  Google Scholar 

  39. Chen, W. M.; Luo, X. L.; Ling, S. L.; Zhou, Y. F.; Shen, B. H.; Slater, T. J. A.; Fernandes, J. A.; Lin, T. T.; Wang, J. S.; Shen, Y. Hemoglobin-derived Fe-N -S species supported by bamboo-shaped carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Carbon 2020, 168, 588–596.

    CAS  Google Scholar 

  40. Jin, M. M.; Li, J. W.; Gao, J. C.; Liu, W. L.; Han, J.; Liu, H. M.; Zhan, D.; Lai, L. F. Atomic-level tungsten doping triggered low overpotential for electrocatalytic water splitting. J. Colloid Interface Sci. 2021, 587, 581–589.

    CAS  Google Scholar 

  41. Tang, C. Y.; He, D.; Zhang, N.; Song, X. Y.; Jia, S. F.; Ke, Z. J.; Liu, J. C.; Wang, J. B.; Jiang, C. Z.; Wang, Z. Y. et al. Electronic coupling of single atom and FePS3 boosts water electrolysis. Energy Environ. Mater. 2022, 5, 899–905.

    CAS  Google Scholar 

  42. Bai, X.; Duan, Z. Y.; Nan, B.; Wang, L. M.; Tang, T. M.; Guan, J. Q. Unveiling the active sites of ultrathin Co-Fe layered double hydroxides for the oxygen evolution reaction. Chin. J. Catal. 2022, 43, 2240–2248.

    CAS  Google Scholar 

  43. Swierk, J. R.; Klaus, S.; Trotochaud, L.; Bell, A. T.; Tilley, T. D. Electrochemical study of the energetics of the oxygen evolution reaction at nickel iron (Oxy)hydroxide catalysts. J. Phys. Chem. C 2015, 119, 19022–19029.

    CAS  Google Scholar 

  44. Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    CAS  Google Scholar 

  45. Han, L. L.; Cheng, H.; Liu, W.; Li, H. Q.; Ou, P. F.; Lin, R. Q.; Wang, H. T.; Pao, C. W.; Head, A. R.; Wang, C. H. et al. A singleatom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 2022, 21, 681–688.

    CAS  Google Scholar 

  46. Bai, X.; Wang, L. M.; Nan, B.; Tang, T. M.; Niu, X. D.; Guan, J. Q. Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Res. 2022, 15, 6019–6025.

    CAS  Google Scholar 

  47. Guo, D.; Huang, Z.; Liu, Y. Y.; Zhang, Q.; Yang, Y. L.; Hong, J. M. Incorporation of single-atom copper into nitrogen-doped graphene for acetaminophen electrocatalytic degradation. Appl. Surf. Sci. 2022, 604, 154561.

    CAS  Google Scholar 

  48. Liu, D. W.; Srinivas, K.; Chen, X.; Ma, F.; Zhang, X. J.; Wang, X. Q.; Wang, B.; Chen, Y. F. Dual Fe, Zn single atoms anchored on carbon nanotubes inlaid N, S-doped hollow carbon polyhedrons for boosting oxygen reduction reaction. J. Colloid Interface Sci. 2022, 624, 680–690.

    CAS  Google Scholar 

  49. Lu, G. P.; Shan, H. B.; Lin, Y. M.; Zhang, K.; Zhou, B. J.; Zhong, Q.; Wang, P. C. A Fe single atom on N, S-doped carbon catalyst for performing N-alkylation of aromatic amines under solvent-free conditions. J. Mater. Chem. A 2021, 9, 25128–25135.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22075099), the Natural Science Foundation of Jilin Province (No. 20220101051JC), and the Education Department of Jilin Province (No. JJKH20220967KJ)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodi Niu or Jingqi Guan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Han, J., Niu, X. et al. The d-orbital regulation of isolated manganese sites for enhanced oxygen evolution. Nano Res. 16, 10796–10802 (2023). https://doi.org/10.1007/s12274-023-5859-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5859-8

Keywords

Navigation