Skip to main content
Log in

Engineered interface of three-dimensional coralliform NiS/FeS2 heterostructures for robust electrocatalytic water cleavage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heterojunction structures improve the intrinsic activity of electrocatalysts by enhancing the charge transfer between the catalyst and the electrode. In this paper, the NiS/FeS2 heterostructured electrocatalyst is fabricated by a simple sulfidation method using an interface engineering strategy to adjust the surface electron density of the electrocatalyst. As expected, NiS/FeS2 electrocatalyst exhibits superior activity and durable oxygen evolution reaction (OER) stability, requiring only a low overpotential of 183 mV to achieve a current density of 10 mA·cm−2 and can be stable for more than 80 h, superior to NiS, FeS2 electrocatalyst individually, and precious RuO2. Notably, NiS/FeS2 is also a good bifunctional electrocatalyst with good overall water splitting performance, and it only requires a voltage 1.56 V to obtain a current density of 10 mA·cm−2 for more than 12 h. Remarkably, the NiS/FeS2 hybridization facilitates the formation of coral-like structures, increasing the electrochemical surface area (ECSA) and enhancing the charge transfer efficiency, thus leading to excellent electrocatalytic performance. This work proposes a constructive strategy for designing efficient electrocatalysts based on interface engineering, and lays a foundation for designing a new class of electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, X. P.; Huang, C.; Han, W. K.; Ouyang, T.; Liu, Z. Q. Transition metal-based electrocatalysts for overall water splitting. Chin. Chem. Lett. 2021, 32, 2597–2616.

    Article  CAS  Google Scholar 

  2. Xu, S. R.; Zhao, H. T.; Li, T. S.; Liang, J.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Asiri, A. M.; Wu, Q.; Sun, X. P. Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: Recent advances and future prospects. J. Mater. Chem. A 2020, 8, 19729–19745.

    Article  CAS  Google Scholar 

  3. Wang, S. D.; Zhang, X. D.; Chen, G. Z.; Liu, B.; Li, H. M.; Hu, J. H.; Fu, J. W.; Liu, M. Hydroxyl radical induced from hydrogen peroxide by cobalt manganese oxides for ciprofloxacin degradation. Chin. Chem. Lett. 2022, 33, 5208–5212.

    Article  CAS  Google Scholar 

  4. Cai, C.; Liu, K.; Zhu, Y. M.; Li, P. C.; Wang, Q. Y.; Liu, B.; Chen, S. Y.; Li, H. J. W.; Zhu, L.; Li, H. M. et al. Optimizing hydrogen binding on Ru sites with RuCo alloy nanosheets for efficient alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202113664.

    Article  CAS  Google Scholar 

  5. Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

    Article  CAS  Google Scholar 

  6. Li, D. Y.; Liao, L. L.; Zhou, H. Q.; Zhao, Y.; Cai, F. M.; Zeng, J. S.; Liu, F.; Wu, H.; Tang, D. S.; Yu, F. Highly active non-noble electrocatalyst from Co2P/Ni2P nanohybrids for pH-universal hydrogen evolution reaction. Mater. Today Phys. 2021, 16, 100314.

    Article  CAS  Google Scholar 

  7. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    Article  CAS  Google Scholar 

  8. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    Article  CAS  Google Scholar 

  9. Yu, X.; Xu, S. R.; Wang, Z.; Cheng, X. H.; Du, Y. S.; Chen, G.; Sun, X. P.; Wu, Q. An Mn-doped NiCoP flower-like structure as a highly efficient electrocatalyst for hydrogen evolution reaction in acidic and alkaline solutions with long duration. Nanoscale 2021, 13, 11069–11076.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    Article  CAS  Google Scholar 

  11. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    Article  CAS  Google Scholar 

  12. Cao, M. Q.; Liu, K.; Song, Y.; Ma, C.; Lin, Y. Y.; Li, H. J. W.; Chen, K. J.; Fu, J. W.; Li, H. M.; Luo, J. et al. Regulating local charges of atomically dispersed Moδ+ sites by nitrogen coordination on cobalt nanosheets to trigger water dissociation for boosted hydrogen evolution in alkaline media. J. Energy Chem. 2022, 72, 125–132.

    Article  CAS  Google Scholar 

  13. Wu, K. N.; Wei, X. N.; Li, D.; Hu, P. Nitrogen incorporated nickel molybdenum sulfide as efficient electrocatalyst for overall water splitting. J. Mater. Sci. Technol. 2022, 99, 270–276.

    Article  CAS  Google Scholar 

  14. Li, Y. J.; Mao, Z. F.; Wang, Q.; Li, D. B.; Wang, R.; He, B. B.; Gong, Y. S.; Wang, H. W. Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting. Chem. Eng. J. 2020, 390, 124556.

    Article  CAS  Google Scholar 

  15. Riyajuddin, S.; Azmi, K.; Pahuja, M.; Kumar, S.; Maruyama, T.; Bera, C.; Ghosh, K. Super-hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P-CuP2 nano-architecture as efficient electrocatalyst for overall water splitting. ACS Nano 2021, 15, 5586–5599.

    Article  CAS  PubMed  Google Scholar 

  16. Cao, X. L.; Xiong, Y.; Sun, J.; Xie, X. Y.; Sun, Q. J.; Wang, Z. L. Multidiscipline applications of triboelectric nanogenerators for the intelligent era of internet of things. Nano-Micro Lett. 2023, 15, 14.

    Article  CAS  Google Scholar 

  17. Chen, S.; Chen, Q. W.; Ding, S. Y.; Tian, Y. D.; Wang, J.; Hou, S. Q.; Zhang, J. T. Rational design of carbon-based electrocatalysts for enhancing redox reactions in rechargeable metal batteries. Nano Res 2023, 16, 4246–4276.

    Article  Google Scholar 

  18. Liu, Q.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Yang, Q.; Dong, K.; Fang, X. D.; Zheng, D. D.; Alshehri, A. A.; Sun, X. P. N, O-doped carbon foam as metal-free electrocatalyst for efficient hydrogen production from seawater. Nano Res. 2022, 15, 8922–8927.

    Article  CAS  Google Scholar 

  19. Yu, X.; Xu, S. R.; Liu, X.; Cheng, X. H.; Du, Y. S.; Wu, Q. Mn-doped NiCo2S4 nanosheet array as an efficient and durable electrocatalyst for oxygen evolution reaction. J. Alloys Compd. 2021, 878, 160388.

    Article  CAS  Google Scholar 

  20. Pang, Y.; Xu, W. C.; Zhu, S. L.; Cui, Z. D.; Liang, Y. Q.; Li, Z. Y.; Wu, S. L.; Chang, C. T.; Luo, S. Y. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting. J. Mater. Sci. Technol. 2021, 82, 96–104.

    Article  CAS  Google Scholar 

  21. Luo, W. J.; Wang, Y. J.; Cheng, C. W. Ru-based electrocatalysts for hydrogen evolution reaction: Recent research advances and perspectives. Mater. Today Phys. 2020, 15, 100274.

    Article  Google Scholar 

  22. Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2216, 6, 8069–8097.

    Article  Google Scholar 

  23. Hu, Y. W.; Xiong, T. Z.; Balogun, M. S. J. T.; Huang, Y. C.; Adekoya, D.; Zhang, S. Q.; Tong, Y. X. Enhanced metallicity boosts hydrogen evolution capability of dual-bimetallic Ni-Fe nitride nanoparticles. Mater. Today Phys. 2020, 15, 100267.

    Article  Google Scholar 

  24. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  25. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, F. H.; Liu, Y. F.; Wu, L. B.; Ning, M. H.; Song, S. W.; Xiao, X.; Hadjiev, V. G.; Fan, D. E.; Wang, D. Z.; Yu, L. et al. Efficient alkaline seawater oxidation by a three-dimensional core-shell dendritic NiCo@NiFe layered double hydroxide electrode. Mater. Today Phys. 2022, 27, 100841.

    Article  CAS  Google Scholar 

  27. Xiao, Z. Y.; Zhou, W.; Zhang, N.; Liao, C. G.; Huang, S. C.; Chen, G. X.; Chen, G.; Liu, M.; Liu, X. H.; Ma, R. Z. Lithium doped nickel oxide nanocrystals with a tuned electronic structure for oxygen evolution reaction. Chem. Commun. 2021, 57, 6070–6073.

    Article  CAS  Google Scholar 

  28. Zhao, J.; Zhang, J. J.; Li, Z. Y.; Bu, X. H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small 2020, 16, 2003916.

    Article  CAS  Google Scholar 

  29. Xu, S. R.; Du, Y. S.; Yu, X.; Wang, Z.; Cheng, X. H.; Liu, Q.; Luo, Y. L.; Sun, X. P.; Wu, Q. A Cr-FeOOH@Ni-P/NF binder-free electrode as an excellent oxygen evolution reaction electrocatalyst. Nanoscale 2021, 13, 17003–17010.

    Article  CAS  PubMed  Google Scholar 

  30. Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

    Article  CAS  Google Scholar 

  31. Liao, H. X.; Ni, G. H.; Tan, P. F.; Liu, Y.; Chen, K. J.; Wang, G. M.; Liu, M.; Pan, J. Borate narrowed band gap of nickel-iron layer double hydroxide to mediate rapid reconstruction kinetics for water oxidation. Appl. Catal. B: Environ. 2022, 317, 121713.

    Article  CAS  Google Scholar 

  32. Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 2020, 10, 1900954.

    Article  CAS  Google Scholar 

  33. Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

    Article  Google Scholar 

  34. Xu, S. R.; Yu, X.; Luo, L.; Li, W. J.; Du, Y. S.; Kong, Q. Q.; Wu, Q. Multiscale manipulating induced flexible heterogeneous V-NiFe2O4@Ni2P electrocatalyst for efficient and durable oxygen evolution reaction. Nano Res. 2022, 15, 4942–4949.

    Article  CAS  Google Scholar 

  35. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    Article  CAS  Google Scholar 

  36. Wang, J.; Zhong, H. X.; Wang, Z. L.; Meng, F. L.; Zhang, X. B. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 2011, 10, 2342–2348.

    Article  Google Scholar 

  37. Liu, M. J.; Li, J. H. Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl. Mater. Interfaces 2011, 8, 2158–2165.

    Article  Google Scholar 

  38. Zhang, W. Q.; Qin, X. H.; Wei, T. R.; Liu, Q.; Luo, J.; Liu, X. J. Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia. J. Colloid Interface Sci. 2023, 638, 650–657.

    Article  CAS  PubMed  Google Scholar 

  39. Liao, C. G.; Xiao, Z. Y.; Zhang, N.; Liang, B.; Chen, G.; Wu, W.; Pan, J. L.; Liu, M.; Zheng, X. R.; Kang, Q. et al. Photo-irradiation tunes highly active sites over β-Ni(OH)2 nanosheets for the electrocatalytic oxygen evolution reaction. Chem. Commun. 2021, 57, 9060–9063.

    Article  CAS  Google Scholar 

  40. Liao, H. X.; Luo, T.; Tan, P. F.; Chen, K. J.; Lu, L. L.; Liu, Y.; Liu, M.; Pan, J. Unveiling role of sulfate ion in nickel-iron (oxy) hydroxide with enhanced oxygen-evolving performance. Adv. Funct. Mater. 2021, 31, 2102772.

    Article  CAS  Google Scholar 

  41. Chen, S. Y.; Wang, S. Y.; Hao, P. P.; Li, M. H.; Zhang, Y.; Guo, J.; Ding, W. P.; Liu, M.; Wang, J. L.; Guo, X. F. N, O-C nanocage-mediated high-efficient hydrogen evolution reaction on IrNi@N, O-C electrocatalyst. Appl. Catal. B: Environ. 2022, 304, 120996.

    Article  CAS  Google Scholar 

  42. Li, W.; Gao, X. F.; Xiong, D. H.; Wei, F.; Song, W. G.; Xu, J. Y.; Liu, L. F. Hydrothermal synthesis of monolithic Co3Se4 nanowire electrodes for oxygen evolution and overall water splitting with high efficiency and extraordinary catalytic stability. Adv. Energy Mater. 2017, 7, 1602579.

    Article  Google Scholar 

  43. Li, W.; Xiong, D. H.; Gao, X. F.; Liu, L. F. The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes. Chem. Commun. 2099, 55, 8744–8763.

    Article  Google Scholar 

  44. Meng, G.; Cao, H. J.; Wei, T. R.; Liu, Q.; Fu, J. T.; Zhang, S. S.; Luo, J.; Liu, X. J. Highly dispersed Ru clusters toward an efficient and durable hydrogen oxidation reaction. Chem. Commun. 2022, 58, 11839–11842.

    Article  CAS  Google Scholar 

  45. Li, Y. X.; Yin, J.; An, L.; Lu, M.; Sun, K.; Zhao, Y. Q.; Gao, D. Q.; Cheng, F. Y.; Xi, P. X. FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small 2018, 14, 1801070.

    Article  Google Scholar 

  46. Yang, Y. Y.; Meng, H. X.; Zhang, Y.; Li, Z. M.; Zhang, Z. Y.; Hu, Z. G. Interfaces modulation strategy to synthesize bifunctional electrocatalyst for highly efficient overall water splitting. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 607, 125452.

    Article  CAS  Google Scholar 

  47. Tian, G. Q.; Wei, S. R.; Guo, Z. T.; Wu, S. W.; Chen, Z. L.; Xu, F. M.; Cao, Y.; Liu, Z.; Wang, J. Q.; Ding, L. et al. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting. J. Mater. Sci. Technol. 2021, 77, 108–116.

    Article  CAS  Google Scholar 

  48. Zhao, Y. F.; Jia, X. D.; Chen, G. B.; Shang, L.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517–6524.

    Article  CAS  PubMed  Google Scholar 

  49. Wu, L. B.; Yu, L.; McElhenny, B.; Xing, X. X.; Luo, D.; Zhang, F. H.; Bao, J. M.; Chen, S.; Ren, Z. F. Rational design of core-shell-structured CoP,@FeOOH for efficient seawater electrolysis. Appl. Catal. B: Environ. 2021, 294, 120256.

    Article  CAS  Google Scholar 

  50. Ren, J. T.; Yuan, Z. Y. Hierarchical nickel sulfide nanosheets directly grown on Ni foam: A stable and efficient electrocatalyst for water reduction and oxidation in alkaline medium. ACS Sustain. Chem. Eng. 2017, 5, 7203–7210.

    Article  CAS  Google Scholar 

  51. Guo, K. L.; Wang, Y. T.; Yang, S. Z.; Huang, J. F.; Zou, Z. H.; Pan, H. R.; Shinde, P. S.; Pan, S. L.; Huang, J. E.; Xu, C. L. Bonding interface boosts the intrinsic activity and durability of NiSe@Fe2O3 heterogeneous electrocatalyst for water oxidation. Sci. Bull. 2021, 66, 52–61.

    Article  CAS  Google Scholar 

  52. Dong, B.; Zhao, X.; Han, G. Q.; Li, X.; Shang, X.; Liu, Y. R.; Hu, W. H.; Chai, Y. M.; Zhao, H.; Liu, C. G. Two-step synthesis of binary Ni-Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 13499–13508.

    Article  CAS  Google Scholar 

  53. Liu, C. C.; Han, Y.; Yao, L. B.; Liang, L. M.; He, J. Y.; Hao, Q. Y.; Zhang, J.; Li, Y.; Liu, H. Engineering bimetallic NiFe-based hydroxides/selenides heterostructure nanosheet arrays for highly-efficient oxygen evolution reaction. Small 2021, 17, 2007334.

    Article  CAS  Google Scholar 

  54. He, X. B.; Zhao, X. R.; Yin, F. X.; Chen, B. H.; Li, G. R.; Yin, H. Q. NiS-FeS/N, S co-doped carbon hybrid: Synergistic effect between NiS and FeS facilitating electrochemical oxygen evolution reaction. Int. J. Energy Res. 2020, 44, 7057–7067.

    Article  CAS  Google Scholar 

  55. Li, W. J.; Deng, Y. Q.; Luo, L.; Du, Y. S.; Cheng, X. H.; Wu, Q. Nitrogen-doped Fe2O3/NiTe2 as an excellent bifunctional electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2023, 639, 416–423.

    Article  CAS  PubMed  Google Scholar 

  56. Wen, X. L.; Liang, Y. X.; Bai, P. P.; Luo, B. W.; Fang, T.; Yue, L.; An, T.; Song, W. Y.; Zheng, S. Q. First-principles calculations of the structural, elastic and thermodynamic properties of mackinawite (FeS) and pyrite (FeS2). Phys. B: Condens. Matter 2017, 525, 119–126.

    Article  CAS  Google Scholar 

  57. Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.

    Article  Google Scholar 

  58. Zheng, L.; Dong, Y. Y.; Chi, B.; Cui, Z. M.; Deng, Y. J.; Shi, X. D.; Du, L.; Liao, S. J. UIO-66-NH2-derived mesoporous carbon catalyst co-doped with Fe/N/S as highly efficient cathode catalyst for PEMFCs. Small 2019, 15, 1803520.

    Article  Google Scholar 

  59. Jin, H. H.; Zhou, H.; He, D. P.; Wang, Z. H.; Wu, Q. L.; Liang, Q. R.; Liu, S. L.; Mu, S. C. MOF-derived 3D Fe-N-S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Appl. Catal. B: Environ. 2019, 250, 143–149.

    Article  CAS  Google Scholar 

  60. Wang, K.; Guo, W. L.; Yan, S. C.; Song, H. Z.; Shi, Y. Hierarchical Co-FeS2/CoS2 heterostructures as a superior bifunctional electrocatalyst. RSC Adv. 2018, 8, 28684–28691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu, A. P.; Xie, Y.; Ma, H.; Tian, C. G.; Gu, Y.; Yan, H. J.; Zhang, X. M.; Yang, G. Y.; Fu, H. G. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 2018, 44, 353–363.

    Article  CAS  Google Scholar 

  62. Chae, G. S.; Youn, D. H.; Lee, J. S. Nanostructured iron sulfide/N, S dual-doped carbon nanotube-graphene composites as efficient electrocatalysts for oxygen reduction reaction. Materials 2021, 14, 2146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Su, H.; Song, S. J.; Li, S. S.; Gao, Y. Q.; Ge, L.; Song, W. Y.; Ma, T. Y.; Liu, J. High-valent bimetal Ni3S2/Co3S4 induced by Cu doping for bifunctional electrocatalytic water splitting. Appl. Catal. B: Environ. 2021, 293, 120225.

    Article  CAS  Google Scholar 

  64. Yu, L.; Mishra, I. K.; Xie, Y. L.; Zhou, H. Q.; Sun, J. Y.; Zhou, J. Q.; Ni, Y. Z.; Luo, D.; Yu, F.; Yu, Y. et al. Ternary Ni2(1-x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density. Nano Energy 2018, 53, 492–500.

    Article  CAS  Google Scholar 

  65. Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N. A.; Li, Y.; Penner, R. M.; Schaak, R. E.; Weiss, P. S. Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano 2018, 12, 9635–9638.

    Article  CAS  PubMed  Google Scholar 

  66. Yu, J. H.; Cheng, G. Z.; Luo, W. Ternary nickel-iron sulfide microflowers as a robust electrocatalyst for bifunctional water splitting. J. Mater. Chem. A 2017, 5, 15838–15844.

    Article  CAS  Google Scholar 

  67. Luan, X. Q.; Du, H. T.; Kong, Y.; Qu, F. L.; Lu, L. M. A novel FeS-NiS hybrid nanoarray: An efficient and durable electrocatalyst for alkaline water oxidation. Chem. Commun. 2019, 55, 7335–7338.

    Article  CAS  Google Scholar 

  68. Li, C. Y.; Liu, M. D.; Ding, H. Y.; He, L. Q.; Wang, E. Z.; Wang, B. L.; Fan, S. S.; Liu, K. A lightly Fe-doped (NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 17527–17536.

    Article  CAS  Google Scholar 

  69. Yang, Y.; Xie, Y. C.; Yu, Z. H.; Guo, S. S.; Yuan, M. W.; Yao, H. Q.; Liang, Z. P.; Lu, Y. R.; Chan, T. S.; Li, C. et al. Self-supported NiFe-LDH@CoSx nanosheet arrays grown on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 2021, 419, 129512.

    Article  CAS  Google Scholar 

  70. Ding, L.; Li, K.; Xie, Z. Q.; Yang, G. Q.; Yu, S. L.; Wang, W. T.; Yu, H. R.; Baxter, J.; Meyer, H. M.; Cullen, D. A. et al. Constructing ultrathin W-doped NiFe nanosheets via facile electrosynthesis as bifunctional electrocatalysts for efficient water splitting. ACS Appl. Mater. Interfaces 2021, 13, 20070–20080.

    Article  CAS  PubMed  Google Scholar 

  71. Liu, Z. H.; Tan, H.; Xin, J. P.; Duan, J. Z.; Su, X. W.; Hao, P.; Xie, J. F.; Zhan, J.; Zhang, J.; Wang, J. J. et al. Metallic intermediate phase inducing morphological transformation in thermal nitridation: Ni3FeN-based three-dimensional hierarchical electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 2018, 10, 3699–3706.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, X. L.; Liang, C.; Qu, X. Y.; Ren, Y. F.; Yin, J. J.; Wang, W. J.; Yang, M. S.; Huang, W.; Dong, X. C. Sandwich-structured Fe-Ni2P/MoSx/NF bifunctional electrocatalyst for overall water splitting. Adv. Mater. Interfaces 2020, 7, 1901926.

    Article  CAS  Google Scholar 

  73. Jin, C. Q.; Zhai, P. B.; Wei, Y.; Chen, Q.; Wang, X. G.; Yang, W. W.; Xiao, J.; He, Q. Q.; Liu, Q. Y.; Gong, Y. J. Ni(OH)2 templated synthesis of ultrathin Ni3S2 nanosheets as bifunctional electrocatalyst for overall water splitting. Small 2021, 17, 2102097.

    Article  CAS  Google Scholar 

  74. Jiang, S.; Shao, H.; Cao, G. Y.; Li, H.; Xu, W. L.; Li, J. L.; Fang, J.; Wang, X. G. Waste cotton fabric derived porous carbon containing Fe3O4/NiS nanoparticles for electrocatalytic oxygen evolution. J. Mater. Sci. Technol. 2020, 19, 92–99.

    Google Scholar 

  75. Zhai, Z. J.; Li, C.; Zhang, L.; Wu, H. C.; Zhang, L.; Tang, N.; Wang, W.; Gong, J. L. Dimensional construction and morphological tuning of heterogeneous MoS2/NiS electrocatalysts for efficient overall water splitting. J. Mater. Chem. A 2018, 6, 9833–9838.

    Article  CAS  Google Scholar 

  76. Xiao, X.; Huang, D. K.; Fu, Y. Q.; Wen, M.; Jiang, X. X.; Lv, X. W.; Li, M.; Gao, L.; Liu, S. S.; Wang, M. K. et al. Engineering NiS/Ni2P heterostructures for efficient electrocatalytic water splitting. ACS Appl. Mater. Interfaces 2018, 10, 4689–4696.

    Article  CAS  PubMed  Google Scholar 

  77. Wu, C. R.; Liu, B. T.; Wang, J.; Su, Y. Y.; Yan, H. Q.; Ng, C.; Li, C.; Wei, J. M. 3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting. Appl. Surf. Sci. 2018, 441, 1024–1033.

    Article  CAS  Google Scholar 

  78. Jadhav, H. S.; Roy, A.; Desalegan, B. Z.; Seo, J. G. An advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting. Sustain. Energy Fuels 2020, 4, 312–323.

    Article  CAS  Google Scholar 

  79. Gao, L. F.; Guo, C. Y.; Liu, X. J.; Ma, X. J.; Zhao, M. Z.; Kuang, X.; Yang, H.; Zhu, X. J.; Sun, X.; Wei, Q. Co-doped FeS2 with a porous structure for efficient electrocatalytic overall water splitting. New J. Chem. 2020, 44, 1711–1718.

    Article  CAS  Google Scholar 

  80. Zhang, R. Z.; Zhu, Z. Q.; Lin, J. H.; Zhang, K. F.; Li, N.; Zhao, C. J. Hydrolysis assisted in-situ growth of 3D hierarchical FeS/NiS/nickel foam electrode for overall water splitting. Electrochim. Acta 2020, 332, 135534.

    Article  CAS  Google Scholar 

  81. Guan, J. L.; Li, C. F.; Zhao, J. W.; Yang, Y. Z.; Zhou, W.; Wang, Y.; Li, G. R. FeOOH-enhanced bifunctionality in Ni3N nanotube arrays for water splitting. Appl. Catal. B: Environ. 2020, 269, 118600.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22275052), the Natural Science Foundation of Hubei Province (No. 2019CFB569), and the Science and Technology Foundation for Creative Research Group of Hubei Normal University (No. 2019CZ08). The authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for the TEM test and SCI-Go (www.sci-go.com) for the XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Cheng, Xing Wang or Qi Wu.

Electronic Supplementary Material

12274_2023_5740_MOESM1_ESM.pdf

Engineered interface of three-dimensional coralliform NiS/FeS2 heterostructures for robust electrocatalytic water cleavage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Mei, J., Du, Y. et al. Engineered interface of three-dimensional coralliform NiS/FeS2 heterostructures for robust electrocatalytic water cleavage. Nano Res. 17, 4693–4701 (2024). https://doi.org/10.1007/s12274-023-5740-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5740-9

Keywords

Navigation