Skip to main content
Log in

Stable all-solid-state Li-Te battery with Li3TbBr6 superionic conductor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rare-earth (RE) halide solid electrolytes (HSEs) have been an emerging research area due to their good electrochemical and mechanical properties for all-solid-state lithium batteries (ASSBs). However, only very limited types of HSEs have been reported with high performance. In this work, tens of grams of RE-HSE Li3TbBr6 (LTbB) was synthesized by a vacuum evaporation-assisted method. The as-prepared LTbB displays a high ionic conductivity of 1.7 mS·cm−1, a wide electrochemical window, and good formability. Accordingly, the assembled solid lithium-tellurium (Li-Te) battery based on the LTbB HSE exhibits excellent cycling stability up to 600 cycles, which is superior to most previous reports. The processes and the chemicals during the discharge/charge of Li-Te batteries have been studied by various in situ and ex situ characterizations. Theoretical calculations have demonstrated the dominant conductivity contributions of the direct [octahedral]-[octahedral] ([Oct]–[Oct]) pathway for Li ion migrations in the electrolyte. The Tb sites guarantee efficient electron transfer while the Li 2s orbitals are not affected during migration, leading to a low activation barrier. Therefore, this successful fabrication and application of LTbB have offered a highly competitive solution for solid electrolytes in ASSBs, indicating the great potential of RE-based HSEs in energy devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    CAS  Google Scholar 

  2. Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

    Google Scholar 

  3. Schnell, J.; Tietz, F.; Singer, C.; Hofer, A.; Billot, N.; Reinhart, G. Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries. Energy Environ. Sci. 2019, 12, 1818–1833.

    CAS  Google Scholar 

  4. Braga, M. H.; Grundish, N. S.; Murchison, A. J.; Goodenough, J. B. Alternative strategy for a safe rechargeable battery. Energy Environ. Sci. 2017, 10, 331–336.

    CAS  Google Scholar 

  5. Su, Y. B.; Ye, L. H.; Fitzhugh, W.; Wang, Y. C.; Gil-González, E.; Kim, I.; Li, X. A more stable lithium anode by mechanical constriction for solid state batteries. Energy Environ. Sci. 2020, 13, 908–916.

    CAS  Google Scholar 

  6. Wu, B. B.; Wang, S. Y.; Lochala, J.; Desrochers, D.; Liu, B.; Zhang, W. Q.; Yang, J. H.; Xiao, J. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 2018, 11, 1803–1810.

    CAS  Google Scholar 

  7. Zhang, Z. Z.; Shao, Y. J.; Lotsch, B.; Hu, Y. S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C. W.; Maier, J.; Armand, M. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 2018, 11, 1945–1976.

    CAS  Google Scholar 

  8. Xia, S. X.; Wu, X. S.; Zhang, Z. C.; Cui, Y.; Liu, W. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 2019, 5, 753–785.

    CAS  Google Scholar 

  9. Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

    CAS  Google Scholar 

  10. Zheng, Y.; Yao, Y. Z.; Ou, J. H.; Li, M.; Luo, D.; Dou, H. Z.; Li, Z. Q.; Amine, K.; Yu, A. P.; Chen, Z. W. A review of composite solidstate electrolytes for lithium batteries: Fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839.

    CAS  Google Scholar 

  11. Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252.

    CAS  Google Scholar 

  12. Chen, R. S.; Li, Q. H.; Yu, X. Q.; Chen, L. Q.; Li, H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem. Rev. 2020, 120, 6820–6877.

    CAS  Google Scholar 

  13. Garbayo, I.; Struzik, M.; Bowman, W. J.; Pfenninger, R.; Stilp, E.; Rupp, J. L. M. Glass-type polyamorphism in Li-garnet thin film solid state battery conductors. Adv. Energy Mater. 2018, 8, 1702265.

    Google Scholar 

  14. Xie, M. L.; Lin, X.; Huang, Z. M.; Li, Y. Y.; Zhong, Y.; Cheng, Z. X.; Yuan, L. X.; Shen, Y.; Lu, X.; Zhai, T. Y. et al. A Li−Al−O solid-state electrolyte with high ionic conductivity and good capability to protect Li anode. Adv. Funct. Mater. 2020, 30, 1905949.

    CAS  Google Scholar 

  15. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686.

    CAS  Google Scholar 

  16. Li, X. N.; Liang, J. W.; Li, X.; Wang, C. H.; Luo, J.; Li, R. Y.; Sun, X. L. High-performance all-solid-state Li-Se batteries induced by sulfide electrolytes. Energy Environ. Sci. 2018, 11, 2828–2832.

    CAS  Google Scholar 

  17. Samson, A. J.; Hofstetter, K.; Bag, S.; Thangadurai, V. A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ. Sci. 2019, 12, 2957–2975.

    CAS  Google Scholar 

  18. Li, W. W.; Sun, C. Z.; Jin, J.; Li, Y. P.; Chen, C. H.; Wen, Z. Y. Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. J. Mater. Chem. A 2019, 7, 27304–27312.

    CAS  Google Scholar 

  19. Wang, X. S.; Liu, J.; Yin, R.; Xu, Y. C.; Cui, Y. H.; Zhao, L.; Yu, X. B. High lithium ionic conductivity of garnet-type oxide Li7+xLa3Zr2−xSmxO12 (x = 0–0.1) ceramics. Mater. Lett. 2018, 231, 43–46.

    CAS  Google Scholar 

  20. Yang, X. F.; Luo, J.; Sun, X. L. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design. Chem. Soc. Rev. 2020, 49, 2140–2195.

    CAS  Google Scholar 

  21. Lee, J.; Lee, T.; Char, K.; Kim, K. J.; Choi, J. W. Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 2021, 54, 3390–3402.

    CAS  Google Scholar 

  22. Song, Y. X.; Shi, Y.; Wan, J.; Lang, S. Y.; Hu, X. C.; Yan, H. J.; Liu, B.; Guo, Y. G.; Wen, R.; Wan, L. J. Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium-sulfur batteries: A degradation mechanism study. Energy Environ. Sci. 2019, 12, 2496–2506.

    CAS  Google Scholar 

  23. Swamy, T.; Chen, X. W.; Chiang, Y. M. Electrochemical redox behavior of Li ion conducting sulfide solid electrolytes. Chem. Mater. 2019, 31, 707–713.

    CAS  Google Scholar 

  24. Li, X.; Ren, Z. H.; Banis, M. N.; Deng, S. X.; Zhao, Y.; Sun, Q.; Wang, C. H.; Yang, X. F.; Li, W. H.; Liang, J. W. et al. Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries. ACS Energy Lett. 2019, 4, 2480–2488.

    CAS  Google Scholar 

  25. Li, X. N.; Liang, J. W.; Yang, X. F.; Adair, K. R.; Wang, C. H.; Zhao, F. P.; Sun, X. L. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ. Sci. 2020, 13, 1429–1461.

    CAS  Google Scholar 

  26. Wang, S.; Bai, Q.; Nolan, A. M.; Liu, Y. S.; Gong, S.; Sun, Q.; Mo, Y. F. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem., Int. Ed. 2019, 58, 8039–8043.

    CAS  Google Scholar 

  27. Li, X. N.; Liang, J. W.; Luo, J.; Banis, M. N.; Wang, C. H.; Li, W. H.; Deng, S. X.; Yu, C.; Zhao, F. P.; Hu, Y. F. et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 2019, 12, 2665–2671.

    CAS  Google Scholar 

  28. Muy, S.; Voss, J.; Schlem, R.; Koerver, R.; Sedlmaier, S. J.; Maglia, F.; Lamp, P.; Zeier, W. G.; Shao-Horn, Y. High-throughput screening of solid-state Li-ion conductors using lattice-dynamics descriptors. iScience 2019, 16, 270–282.

    CAS  Google Scholar 

  29. Xu, Z. M.; Chen, X.; Liu, K.; Chen, R. H.; Zeng, X. Q.; Zhu, H. Influence of anion charge on Li ion diffusion in a new solid-state electrolyte, Li3LaI6. Chem. Mater. 2019, 31, 7425–7433.

    CAS  Google Scholar 

  30. Bohnsack, A.; Balzer, G.; Güdel, H. U.; Wickleder, M. S.; Meyer, G. Ternäre halogenide vom typ A3MX6. VII [1]. Die bromide Li3MBr6 (M = Sm−Lu, Y): Synthese, kristallstruktur, ionenbeweglichkeit. Z. Anorg. Allg. Chem. 1997, 623, 1352–1356.

    CAS  Google Scholar 

  31. Bohnsack, A.; Stenzel, F.; Zajonc, A.; Balzer, G.; Wickleder, M. S.; Meyer, G. Ternäre halogenide vom typ A3MX6. VI [1]. Ternäre chloride der selten-erd-elemente mit lithium, Li3MCl6 (M = Tb−Lu, Y, Sc): Synthese, kristallstrukturen und ionenbewegung. Z. Anorg. Allg. Chem. 1997, 623, 1067–1073.

    CAS  Google Scholar 

  32. Sun, C. T.; Li, K. Y.; Xue, D. F. Searching for novel materials via 4f chemistry. J. Rare Earths 2019, 37, 1–10.

    Google Scholar 

  33. Zhang, Q.; Gao, Z. Q.; Shi, X. M.; Zhang, C.; Liu, K.; Zhang, J.; Zhou, L.; Ma, C. J.; Du, Y. P. Recent advances on rare earths in solid lithium ion conductors. J. Rare Earths 2021, 39, 1–10.

    Google Scholar 

  34. Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 2018, 30, 1803075.

    Google Scholar 

  35. Liang, J. W.; Li, X. N.; Wang, S.; Adair, K. R.; Li, W. H.; Zhao, Y.; Wang, C. H.; Hu, Y. F.; Zhang, L.; Zhao, S. Q. et al. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 2020, 142, 7012–7022.

    CAS  Google Scholar 

  36. Park, K. H.; Kaup, K.; Assoud, A.; Zhang, Q.; Wu, X. H.; Nazar, L. F. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 2020, 5, 533–539.

    CAS  Google Scholar 

  37. Liu, Z. T.; Ma, S.; Liu, J.; Xiong, S.; Ma, Y. F.; Chen, H. L. High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary. ACS Energy Lett. 2021, 6, 298–304.

    CAS  Google Scholar 

  38. Kim, S. Y.; Kaup, K.; Park, K. H.; Assoud, A.; Zhou, L. D.; Liu, J.; Wu, X. H.; Nazar, L. F. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries. ACS Materials Lett. 2021, 3, 930–938.

    CAS  Google Scholar 

  39. Yu, T. W.; Liang, J. W.; Luo, L.; Wang, L. M.; Zhao, F. P.; Xu, G. F.; Bai, X. T.; Yang, R.; Zhao, S. Q.; Wang, J. T. et al. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries. Adv. Energy Mater. 2021, 11, 2101915.

    CAS  Google Scholar 

  40. Schlem, R.; Muy, S.; Prinz, N.; Banik, A.; Shao-Horn, Y.; Zobel, M.; Zeier, W. G. Mechanochemical synthesis: A tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors. Adv. Energy Mater. 2020, 10, 1903719.

    CAS  Google Scholar 

  41. Schlem, R.; Banik, A.; Ohno, S.; Suard, E.; Zeier, W. G. Insights into the lithium sub-structure of superionic conductors Li3YCl6 and Li3YBr6. Chem. Mater. 2021, 33, 327–337.

    CAS  Google Scholar 

  42. Helm, B.; Schlem, R.; Wankmiller, B.; Banik, A.; Gautam, A.; Ruhl, J.; Li, C.; Hansen, M. R.; Zeier, W. G. Exploring aliovalent substitutions in the lithium halide superionic conductor Li3−xIn1−xZrxCl6 (0 ≤ x ≤ 0.5). Chem. Mater. 2021, 33, 4773–4782.

    CAS  Google Scholar 

  43. Wan, T. H.; Ciucci, F. Ab initio study of the defect chemistry and substitutional strategies for highly conductive Li3YX6 (X = F, Cl, Br, and I) electrolyte for the application of solid-state batteries. ACS Appl. Energy Mater. 2021, 4, 7930–7941.

    CAS  Google Scholar 

  44. Jiang, M.; Mukherjee, S.; Chen, Z. W.; Chen, L. X.; Li, M. L.; Xiao, H. Y.; Gao, C.; Singh, C. V. Materials perspective on new lithium chlorides and bromides: Insights into thermo-physical properties. Phys. Chem. Chem. Phys. 2020, 22, 22758–22767.

    CAS  Google Scholar 

  45. He, J. R.; Chen, Y. F.; Lv, W. Q.; Wen, K. C.; Wang, Z. G.; Zhang, W. L.; Li, Y. R.; Qin, W.; He, W. D. Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: A high-performance freestanding cathode for Li-Te batteries. ACS Nano 2016, 10, 8837–8842.

    CAS  Google Scholar 

  46. Xu, J. T.; Ma, J. M.; Fan, Q. H.; Guo, S. J.; Dou, S. X. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Adv. Mater. 2017, 29, 1606454.

    Google Scholar 

  47. Shi, X. M.; Zeng, Z. C.; Zhang, H. T.; Huang, B. L.; Sun, M. Z.; Wong, H. H.; Lu, Q. Y.; Luo, W.; Huang, Y. H.; Du, Y. P. et al. Gram-scale synthesis of nanosized Li3HoBr6 solid electrolyte for all-solid-state Li-Se battery. Small Methods 2021, 5, 2101002.

    CAS  Google Scholar 

  48. Busche, M. R.; Weber, D. A.; Schneider, Y.; Dietrich, C.; Wenzel, S.; Leichtweiss, T.; Schröder, D.; Zhang, W. B.; Weigand, H.; Walter, D. et al. In situ monitoring of fast Li-ion conductor Li7P3S11 crystallization inside a hot-press setup. Chem. Mater. 2016, 28, 6152–6165.

    CAS  Google Scholar 

  49. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.

    CAS  Google Scholar 

  50. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  51. Hasnip, P. J.; Pickard, C. J. Electronic energy minimisation with ultrasoft pseudopotentials. Comput. Phys. Commun. 2006, 174, 24–29.

    CAS  Google Scholar 

  52. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    CAS  Google Scholar 

  53. Anisimov, V. I.; Aryasetiawan, F.; Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA + U method. J. Phys.: Condens. Matter 1997, 9, 767–808.

    CAS  Google Scholar 

  54. Head, J. D.; Zerner, M. C. A broyden-fletcher-goldfarb-shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 1985, 122, 264–270.

    CAS  Google Scholar 

  55. Probert, M. I. J.; Payne, M. C. Improving the convergence of defect calculations in supercells: An ab initio study of the neutral silicon vacancy. Phys. Rev. B 2003, 67, 075204.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2021YFA1501101), the Natural Science Foundation of China (No. 21971117), Functional Research Funds for the Central Universities, Nankai University (No. 63186005), Tianjin Key Lab for Rare Earth Materials and Applications (No. ZB19500202), the National Natural Science Foundation of China/Research Grant Council Joint Research Scheme (No. N_PolyU502/21), 111 Project (No. B18030) from China, Outstanding Youth Project of Tianjin Natural Science Foundation (No. 20JCJQJC00130), Key Project of Tianjin Natural Science Foundation (No. 20JCZDJC00650), the Projects of Strategic Importance of The Hong Kong Polytechnic University (No. 1-ZE2V), Shenzhen Fundamental Research Scheme-General Program (No. JCYJ20220531090807017), National Postdoctoral Program for Innovative Talents (No. BX20220157), Open Foundation of State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures (No. 2022GXYSOF07), and Haihe Laboratory of Sustainable Chemical Transformations. B. L. H. also thanks the support from Research Centre for Carbon-Strategic Catalysis (RCCSC), Research Institute for Smart Energy (RISE), and Research Institute for Intelligent Wearable Systems (RI-IWEAR) of the Hong Kong Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bolong Huang or Yaping Du.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Shi, X., Sun, M. et al. Stable all-solid-state Li-Te battery with Li3TbBr6 superionic conductor. Nano Res. 16, 9344–9351 (2023). https://doi.org/10.1007/s12274-023-5559-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5559-4

Keywords

Navigation