Skip to main content
Log in

Synergistic realization of high efficiency solar desalination and carbon dioxide reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Methods of seawater desalination and carbon dioxide (CO2) reduction using clean and renewable energy have attracted much attention withing the reducing fresh water and growing CO2 concentration. Here, we propose a synergistic method for solar-driven desalination and CO2 reduction at the surface of sea using a three-dimensional titanium oxide-gold semiconductor/metal (TiO2-Au NW/NPs (NW: nanowire, NP: nanoparticle)) photothermal conversion membrane that can efficiently harvest a broad solar spectrum (200 to 2500 nm, 94%) to undertake the conversion of light-to-heat and light-to-electricity. The TiO2-Au NW/NPs membrane demonstrated a high solar vapor conversion efficiency of ∼ 90%, CO2 reduction yields of 0.066 µmol·cm2 CH4 and 0.015 µmol·cm−2 CO within 5 h. In addition, the membrane efficiently evaporated seawater with different salt concentrations to produce drinking water which meet World Health Organization (WHO) and US Environmental Protection Agency (EPA) standards. This work provides an integrated solution for solar desalination and CO2 reduction at the surface of sea to reduce the harm to marine life caused by ocean acidification while producing pure water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, eaad1920.

    Google Scholar 

  2. Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310.

    CAS  Google Scholar 

  3. Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717.

    CAS  Google Scholar 

  4. Han, X. M.; Besteiro, L. V.; Koh, C. S. L.; Lee, H. K.; Phang, I. Y.; Phan-Quang, G. C.; Ng, J. Y.; Sim, H. Y. F.; Lay, C. L.; Govorov, A. et al. Intensifying heat using MOF-isolated graphene for solar-driven seawater desalination at 98% solar-to-thermal efficiency. Adv. Funct. Mater. 2021, 31, 2008904.

    CAS  Google Scholar 

  5. Nawaz, F.; Yang, Y. W.; Zhao, S. H.; Sheng, M. H.; Pan, C.; Que, W. X. Innovative salt-blocking technologies of photothermal materials in solar-driven interfacial desalination. J. Mater. Chem. A 2021, 9, 16233–16254.

    CAS  Google Scholar 

  6. Sheng, M. H.; Yang, Y. W.; Bin, X. Q.; Zhao, S. H.; Pan, C.; Nawaz, F.; Que, W. X. Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems. Nano Energy 2021, 89, 106468.

    CAS  Google Scholar 

  7. Yao, H. Z.; Zhang, P. P.; Yang, C.; Liao, Q. H.; Hao, X. Z.; Huang, Y. X.; Zhang, M.; Wang, X. B.; Lin, T. Y.; Cheng, H. H. et al. Janus-interface engineering boosting solar steam towards high-efficiency water collection. Energy Environ. Sci. 2021, 14, 5330–5338.

    CAS  Google Scholar 

  8. Yoshino, S.; Iwase, A.; Yamaguchi, Y.; Suzuki, T. M.; Morikawa, T.; Kudo, A. Photocatalytic CO2 reduction using water as an electron donor under visible light irradiation by Z-scheme and photoelectrochemical systems over (CuGa)0.5ZnS2 in the presence of basic additives. J. Am. Chem. Soc. 2022, 144, 2323–2332.

    CAS  Google Scholar 

  9. Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

    CAS  Google Scholar 

  10. Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

    Google Scholar 

  11. Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

    Google Scholar 

  12. Wu, J. H.; Huang, Y.; Ye, W.; Li, Y. G. CO2 reduction: From the electrochemical to photochemical approach. Adv. Sci. 2017, 4, 1700194.

    Google Scholar 

  13. Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.

    CAS  Google Scholar 

  14. Long, R.; Li, Y.; Liu, Y.; Chen, S. M.; Zheng, X. S.; Gao, C.; He, C. H.; Chen, N. S.; Qi, Z. M.; Song, L. et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 2017, 139, 4486–4492.

    CAS  Google Scholar 

  15. Sharon, H.; Reddy, K. S. A review of solar energy driven desalination technologies. Renew. Sust. Energy Rev. 2015, 41, 1080–1118.

    CAS  Google Scholar 

  16. Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.

    Google Scholar 

  17. Hu, X. Z.; Xu, W. C.; Zhou, L.; Tan, Y. L.; Wang, Y.; Zhu, S. N.; Zhu, J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 2017, 29, 1604031.

    Google Scholar 

  18. Ito, Y.; Tanabe, Y.; Han, J. H.; Fujita, T.; Tanigaki, K.; Chen, M. W. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 2015, 27, 4302–4307.

    CAS  Google Scholar 

  19. Zhang, L. B.; Tang, B.; Wu, J. B.; Li, R. Y.; Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 2015, 27, 4889–4894.

    CAS  Google Scholar 

  20. Xu, N.; Zhang, H. R.; Lin, Z. H.; Li, J. L.; Liu, G. L.; Li, X. Q.; Zhao, W.; Min, X. Z.; Yao, P. C.; Zhou, L. et al. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation. Natl. Sci. Rev. 2021, 8, nwab065.

    Google Scholar 

  21. Wang, F.; Xu, N.; Zhao, W.; Zhou, L.; Zhu, P. C.; Wang, X. Y.; Zhu, B.; Zhu, J. A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation. Joule 2021, 5, 1602–1612.

    CAS  Google Scholar 

  22. Xu, N.; Li, J. L.; Wang, Y.; Fang, C.; Li, X. Q.; Wang, Y. X.; Zhou, L.; Zhu, B.; Wu, Z.; Zhu, S. N. et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci. Adv. 2019, 5, eaaw7013.

    CAS  Google Scholar 

  23. Lei, C. X.; Guan, W. X.; Guo, Y. H.; Shi, W.; Wang, Y. Y.; Johnston, K. P.; Yu, G. H. Polyzwitterionic hydrogels for highly efficient high salinity solar desalination. Angew. Chem., Int. Ed. 2022, 61, e202208487.

    CAS  Google Scholar 

  24. Yang, L. P.; Sun, T. Y.; Tang, J. B.; Shao, Y.; Li, N. B.; Shen, A. Q.; Chen, J. L.; Zhang, Y. F.; Liu, H.; Xue, G. B. Photovoltaic-multistage desalination of hypersaline waters for simultaneous electricity, water and salt harvesting via automatic rinsing. Nano Energy 2021, 87, 106163.

    CAS  Google Scholar 

  25. Dong, X. Y.; Si, Y.; Chen, C. J.; Ding, B.; Deng, H. B. Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 2021, 15, 12256–12266.

    CAS  Google Scholar 

  26. Zhu, L.; Sun, L.; Zhang, H.; Aslan, H.; Sun, Y.; Huang, Y. D.; Rosei, F.; Yu, M. A solution to break the salt barrier for high-rate sustainable solar desalination. Energy Environ. Sci. 2021, 14, 2451–2459.

    CAS  Google Scholar 

  27. Gao, X.; Ren, H. Y.; Zhou, J. Y.; Du, R.; Yin, C.; Liu, R.; Peng, H. L.; Tong, L. M.; Liu, Z. F.; Zhang, J. Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation. Chem. Mater. 2017, 29, 5777–5781.

    CAS  Google Scholar 

  28. Li, T.; Liu, H.; Zhao, X. P.; Chen, G.; Dai, J. Q.; Pastel, G.; Jia, C.; Chen, C. J.; Hitz, E.; Siddhartha, D. et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport. Adv. Funct. Mater. 2018, 28, 1707134.

    Google Scholar 

  29. Xu, N.; Hu, X. Z.; Xu, W. C.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762.

    Google Scholar 

  30. Xu, J. J.; Xu, F.; Qian, M.; Li, Z.; Sun, P.; Hong, Z. L.; Huang, F. Q. Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination. Nano Energy 2018, 53, 425–431.

    CAS  Google Scholar 

  31. Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.

    CAS  Google Scholar 

  32. Song, X. Y.; Song, H. C.; Xu, N.; Yang, H. F.; Zhou, L.; Yu, L. W.; Zhu, J.; Chen, K. J. Omnidirectional and effective salt-rejecting absorber with rationally designed nanoarchitecture for efficient and durable solar vapour generation. J. Mater. Chem. A 2018, 6, 22976–22986.

    CAS  Google Scholar 

  33. Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

    CAS  Google Scholar 

  34. Zhao, F.; Zhou, X. Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X. P.; Mendez, S.; Yang, R. G.; Qu, L. T.; Yu, G. H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

    CAS  Google Scholar 

  35. Ni, G.; Zandavi, S. H.; Javid, S. M.; Boriskina, S. V.; Cooper, T. A.; Chen, G. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 2018, 11, 1510–1519.

    CAS  Google Scholar 

  36. Werber, J. R.; Osuji, C. O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018.

    CAS  Google Scholar 

  37. Alvarez, P. J. J.; Chan, C. K.; Elimelech, M.; Halas, N. J.; Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 2018, 13, 634–641.

    CAS  Google Scholar 

  38. Chen, W.; Chen, S. Y.; Liang, T. F.; Zhang, Q.; Fan, Z. L.; Yin, H.; Huang, K. W.; Zhang, X. X.; Lai, Z. P.; Sheng, P. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nat. Nanotechnol. 2018, 13, 345–350.

    CAS  Google Scholar 

  39. Morelos-Gomez, A.; Cruz-Silva, R.; Muramatsu, H.; Ortiz-Medina, J.; Araki, T.; Fukuyo, T.; Tejima, S.; Takeuchi, K.; Hayashi, T.; Terrones, M. et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 2017, 12, 1083–1088.

    CAS  Google Scholar 

  40. Li, X. Q.; Li, J. L.; Lu, J. Y.; Xu, N.; Chen, C. L.; Min, X. Z.; Zhu, B.; Li, H. X.; Zhou, L.; Zhu, S. N. et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule 2018, 2, 1331–1338.

    CAS  Google Scholar 

  41. Shi, Y.; Li, R. Y.; Jin, Y.; Zhuo, S. F.; Shi, L.; Chang, J.; Hong, S.; Ng, K. C.; Wang, P. A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2018, 2, 1171–1186.

    CAS  Google Scholar 

  42. Chen, X.; Jin, F. M. Photocatalytic reduction of carbon dioxide by titanium oxide-based semiconductors to produce fuels. Front. Energy 2019, 13, 207–220.

    Google Scholar 

  43. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.

    CAS  Google Scholar 

  44. Kar, P.; Farsinezhad, S.; Mahdi, N.; Zhang, Y.; Obuekwe, U.; Sharma, H.; Shen, J.; Semagina, N.; Shankar, K. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 2016, 9, 3478–3493.

    CAS  Google Scholar 

  45. Shi, Q. J.; Li, Z. J.; Chen, L.; Zhang, X. L.; Han, W. H.; Xie, M. Z.; Yang, J. L.; Jing, L. Q. Synthesis of SPR Au/BiVO4 quantum dot/rutile-TiO2 nanorod array composites as efficient visible-light photocatalysts to convert CO2 and mechanism insight. Appl. Catal. B: Environ. 2019, 244, 641–649.

    CAS  Google Scholar 

  46. Li, X.; Yu, J. G.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636.

    CAS  Google Scholar 

  47. Li, R.; Zhu, Y. B.; Di, Y.; Liu, D. X.; Li, B.; Zhong, W. Fabrication of ordered Au nanoparticles array and its optical absorption properties. Acta Phys. Sin. 2013, 62, 198101.

    Google Scholar 

  48. Grigull, U.; Straub, S.; Schiebener, P. Tables of the properties of ordinary water substance. In Steam Tables in SI-Units/Wasserdampftafeln. Grigull, U.; Straub, J.; Schiebener, P., Eds.; Springer: Berlin, 1990; pp 13–128.

    Google Scholar 

Download references

Acknowledgements

This research is partially supported financially by National Natural Science Foundation of China (No. 62105048), Science and Technology Research Program of Chongqing Education Commission (No. KJQN202100633), the Postdoctoral Science Foundation of China (No. 2021M693768), Natural Science Foundation of Chongqing (No. cstc2021jcyj-bshX0239), and Open Project of the National Laboratory of Solid-State Microstructure (No. M34048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Huang or Guanyu Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Wang, P., Huang, Y. et al. Synergistic realization of high efficiency solar desalination and carbon dioxide reduction. Nano Res. 16, 10530–10536 (2023). https://doi.org/10.1007/s12274-023-5546-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5546-9

Keywords

Navigation