Skip to main content
Log in

Constructing a lithiophilic polyaniline coating via in situ polymerization for dendrite-free lithium metal anode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metallic lithium is regarded as one of the most promising electrode materials to break through the energy density bottleneck of current commercial lithium-ion batteries. However, the practical implementation of lithium metal anode is limited by the unstable electrode interface significantly, which directly induces a low Coulombic efficiency, short cycling lifespan, and dendritic lithium growth behavior. In this study, via in situ electropolymerization, lithiophilic and conformal polyaniline layer is developed to improve the initial lithium nucleation and plating process, reducing the interface charge transfer resistance and promoting uniform lithium plating/stripping behavior. Meanwhile, the polyaniline layer exhibits good adhesion to the substrate. As a result, the Li/Cu half cell delivers a high Coulombic efficiency of 99.1% for 400 cycles at 1.0 mA·cm−2 with polyaniline layer. In addition, long-term stable cycling at a current density of 1.0 mA·cm−2 for 1300 h has been achieved for lithium metal anode. This strategy provides a new perspective for the practical lithium metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zou, P. C.; Sui, Y. M.; Zhan, H. C.; Wang, C. Y.; Xin, H. L.; Cheng, H. M.; Kang, F. Y.; Yang, C. Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev. 2021, 121, 5986–6056.

    Article  CAS  Google Scholar 

  2. Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.

    Article  CAS  Google Scholar 

  3. Xiao, Y.; Xu, R.; Xu, L.; Ding, J. F.; Huang, J. Q. Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries. Energy Mater. 2021, 1, 100013.

    Article  Google Scholar 

  4. Zhang, J. G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J. Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 2020, 120, 13312–13348.

    Article  CAS  Google Scholar 

  5. Xiong, X. S.; Yan, W. Q.; You, C. L.; Zhu, Y. S.; Chen, Y. H.; Fu, L. J.; Zhang, Y.; Yu, N. F.; Wu, Y. P. Methods to improve lithium metal anode for Li-S batteries. Front. Chem. 2019, 7, 827.

    Article  CAS  Google Scholar 

  6. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    Article  CAS  Google Scholar 

  7. Fang, C. C.; Wang, X. F.; Meng, Y. S. Key issues hindering a practical lithium-metal anode. Trends Chem. 2019, 1, 152–158.

    Article  CAS  Google Scholar 

  8. Wang, D. D.; Liu, H. D.; Li, M. Q.; Xia, D. W.; Holoubek, J.; Deng, Z.; Yu, M. Y.; Tian, J. H.; Shan, Z. Q.; Ong, S. P. et al. A long-lasting dual-function electrolyte additive for stable lithium metal batteries. Nano Energy 2020, 75, 104889.

    Article  CAS  Google Scholar 

  9. Qiao, L. X.; Oteo, U.; Martinez-Ibañez, M.; Santiago, A.; Cid, R.; Sanchez-Diez, E.; Lobato, E.; Meabe, L.; Armand, M.; Zhang, H. Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries. Nat. Mater. 2022, 21, 455–462.

    Article  CAS  Google Scholar 

  10. Zhang, W. D.; Wu, Q.; Huang, J. X.; Fan, L.; Shen, Z. Y.; He, Y.; Feng, Q.; Zhu, G. N.; Lu, Y. Y. Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 2020, 32, 2001740.

    Article  CAS  Google Scholar 

  11. Yu, Z. H.; Rudnicki, P. E.; Zhang, Z. W.; Huang, Z. J.; Celik, H.; Oyakhire, S. T.; Chen, Y. L.; Kong, X.; Kim, S. C.; Xiao, X. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 2022, 7, 94–106.

    Article  CAS  Google Scholar 

  12. Chang, C. Y.; Yao, Y.; Li, R. R.; Cong, Z. F.; Li, L. W.; Guo, Z. H.; Hu, W. G.; Pu, X. Stable lithium metal batteries enabled by localized high-concentration electrolytes with sevoflurane as a diluent. J. Mater. Chem. A 2022, 10, 9001–9009.

    Article  CAS  Google Scholar 

  13. Kang, D. W.; Moon, J.; Choi, H. Y.; Shin, H. C.; Kim, B. G. Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content. J. Power Sources 2021, 490, 229504.

    Article  CAS  Google Scholar 

  14. Lee, S. H.; Hwang, J. Y.; Ming, J.; Cao, Z.; Nguyen, H. A.; Jung, H. G.; Kim, J.; Sun, Y. K. Toward the sustainable lithium metal batteries with a new electrolyte solvation chemistry. Adv. Energy Mater. 2020, 10, 2000567.

    Article  CAS  Google Scholar 

  15. Lee, S. H.; Hwang, J. Y.; Ming, J.; Kim, H.; Jung, H. G.; Sun, Y. K. Long-lasting solid electrolyte interphase for stable Li-metal batteries. ACS Energy Lett. 2021, 6, 2153–2161.

    Article  CAS  Google Scholar 

  16. Sun, B.; Zhang, Z. L.; Xu, J.; Lv, Y. P.; Jin, Y. Composite separator based on PI film for advanced lithium metal batteries. J. Mater. Sci. Technol. 2022, 102, 264–271.

    Article  Google Scholar 

  17. Ryu, J.; Han, D. Y.; Hong, D.; Park, S. A polymeric separator membrane with chemoresistance and high Li-ion flux for high-energy-density lithium metal batteries. Energy Stor. Mater. 2022, 45, 941–951.

    Google Scholar 

  18. Yan, W. Q.; Gao, X. W.; Jin, X.; Liang, S. S.; Xiong, X. S.; Liu, Z. C.; Wang, Z. G.; Chen, Y. H.; Fu, L. J.; Zhang, Y. et al. Nonporous gel electrolytes enable long cycling at high current density for lithium-metal anodes. ACS Appl. Mater. Interfaces 2021, 13, 14258–14266.

    Article  CAS  Google Scholar 

  19. Wu, Z.; Cai, Z. P.; Fang, B.; Liu, M. N.; Wu, H. P.; Liu, A. P.; Ye, F. M. A polar and ordered-channel composite separator enables antidendrite and long-cycle lithium metal batteries. ACS Appl. Mater. Interfaces 2021, 13, 25890–25897.

    Article  CAS  Google Scholar 

  20. Han, X.; Chen, J. Z.; Chen, M. F.; Zhou, W. J.; Zhou, X. Y.; Wang, G. W.; Wong, C. P.; Liu, B.; Luo, L. S.; Chen, S. Y. et al. Induction of planar Li growth with designed interphases for dendrite-free Li metal anodes. Energy Stor. Mater. 2021, 39, 250–258.

    Google Scholar 

  21. Yan, J.; Liu, F. Q.; Gao, J.; Zhou, W. D.; Huo, H.; Zhou, J. J.; Li, L. Low-cost regulating lithium deposition behaviors by transition metal oxide coating on separator. Adv. Funct. Mater. 2021, 31, 2007255.

    Article  CAS  Google Scholar 

  22. Xing, X.; Li, Y. J.; Wang, S.; Liu, H. D.; Wu, Z. H.; Yu, S. C.; Holoubek, J.; Zhou, H. Y.; Liu, P. Graphite-based lithium-free 3D hybrid anodes for high energy density all-solid-state batteries. ACS Energy Lett. 2021, 6, 1831–1838.

    Article  CAS  Google Scholar 

  23. Yu, S. C.; Wu, Z. H.; Holoubek, J.; Liu, H. D.; Hopkins, E.; Xiao, Y. X.; Xing, X.; Lee, M. H.; Liu, P. A fiber-based 3D lithium host for lean electrolyte lithium metal batteries. Adv. Sci. 2022, 9, 2104829.

    Article  CAS  Google Scholar 

  24. Wang, Y. Y.; Xu, H. J.; Zhong, J.; Wang, T.; Lu, B. A.; Zhu, J.; Duan, X. D. Hierarchical Ni- and Co-based oxynitride nanoarrays with superior lithiophilicity for high-performance lithium metal anodes. Energy Mater. 2021, 1, 100012.

    Article  Google Scholar 

  25. Qing, P.; Wu, Z. B.; Chen, Y. J.; Tang, F. C.; Yang, H.; Chen, L. B. Powder metallurgical 3D nickel current collectors with plasma-induced Ni3N nanocoatings enabling long-life and dendrite-free lithium metal anode. J. Energy Chem. 2022, 72, 149–157.

    Article  CAS  Google Scholar 

  26. Zhao, F. F.; Zhai, P. B.; Wei, Y.; Yang, Z. L.; Chen, Q.; Zuo, J. H.; Gu, X. K.; Gong, Y. J. Constructing artificial SEI layer on lithiophilic mxene surface for high-performance lithium metal anodes. Adv. Sci. 2022, 9, 2103930.

    Article  CAS  Google Scholar 

  27. Lu, G. X.; Nai, J. W.; Yuan, H. D.; Wang, J. C.; Zheng, J. H.; Ju, Z. J.; Jin, C. B.; Wang, Y.; Liu, T. F.; Liu, Y. J. et al. In-situ electrodeposition of nanostructured carbon strengthened interface for stabilizing lithium metal anode. ACS Nano 2022, 16, 9883–9893.

    Article  CAS  Google Scholar 

  28. Ma, Y.; Wei, L.; Gu, Y. T.; Zhao, L.; Jing, Y. X.; Mu, Q. Q.; Su, Y. H.; Yuan, X. Z.; Peng, Y.; Deng, Z. Insulative ion-conducting lithium selenide as the artificial solid-electrolyte interface enabling heavy-duty lithium metal operations. Nano Lett. 2021, 21, 7354–7362.

    Article  CAS  Google Scholar 

  29. Li, S. M.; Huang, J. L.; Cui, Y.; Liu, S. H.; Chen, Z. R.; Huang, W.; Li, C. F.; Liu, R. L.; Fu, R. W.; Wu, D. C. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol. 2022, 17, 613–621.

    Article  CAS  Google Scholar 

  30. Xiong, X. S.; Zhi, R. Y.; Zhou, Q.; Yan, W. Q.; Zhu, Y. S.; Chen, Y. H.; Fu, L. J.; Yu, N. F.; Wu, Y. P. A binary PMMA/PVDF blend film modified substrate enables a superior lithium metal anode for lithium batteries. Mater. Adv. 2021, 2, 4240–4245.

    Article  CAS  Google Scholar 

  31. Luo, D.; Zheng, L.; Zhang, Z.; Li, M.; Chen, Z. W.; Cui, R. G.; Shen, Y. B.; Li, G. R.; Feng, R. F.; Zhang, S. J. et al. Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nat. Commun. 2021, 12, 186.

    Article  CAS  Google Scholar 

  32. Xiong, X. S.; Yan, W. Q.; Zhu, Y. S.; Liu, L. L.; Fu, L. J.; Chen, Y. H.; Yu, N. F.; Wu, Y. P.; Wang, B.; Xiao, R. Li4Ti5O12 coating on copper foil as ion redistributor layer for stable lithium metal anode. Adv. Energy Mater. 2022, 12, 2103112.

    Article  CAS  Google Scholar 

  33. Zhong, Y.; Huang, P.; Yan, W.; Su, Z.; Sun, C.; Xing, Y. M.; Lai, C. Ion-conductive polytitanosiloxane networks enable a robust solid-electrolyte interface for long-cycling lithium metal anodes. Adv. Funct. Mater. 2022, 32, 2110347.

    Article  CAS  Google Scholar 

  34. Zhang, K.; Wu, F.; Zhang, K.; Weng, S. T.; Wang, X. R.; Gao, M. D.; Sun, Y. H.; Cao, D.; Bai, Y.; Xu, H. J. et al. Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode. Energy Stor. Mater. 2021, 41, 485–494.

    Google Scholar 

  35. Nanda, S.; Gupta, A.; Manthiram, A. Anode-free full cells: A pathway to high-energy density lithium-metal batteries. Adv. Energy Mater. 2021, 11, 2000804.

    Article  CAS  Google Scholar 

  36. Li, H.; Liu, S. Q.; Li, P. C.; Yuan, D.; Zhou, X.; Sun, J. T.; Lu, X. H.; He, C. B. Interfacial control and carrier tuning of carbon nanotube/polyaniline composites for high thermoelectric performance. Carbon 2018, 136, 292–298.

    Article  CAS  Google Scholar 

  37. Jiang, T. C.; Wan, P. B.; Ren, Z. J.; Yan, S. K. Anisotropic polyaniline/swcnt composite films prepared by in situ electropolymerization on highly oriented polyethylene for high-efficiency ammonia sensor. ACS Appl. Mater. Interfaces 2019, 11, 38169–38176.

    Article  CAS  Google Scholar 

  38. Puthirath, A. B.; John, B.; Gouri, C.; Jayalekshmi, S. Lithium doped polyaniline and its composites with LiFePO4 and LiMn2O4-prospective cathode active materials for environment friendly and flexible Li-ion battery applications. RSC Adv. 2015, 5, 69220–69228.

    Article  CAS  Google Scholar 

  39. Zamani, N.; Modarresi-Alam, A. R.; Noroozifar, M.; Javanbakht, M. The improved performance of lithium-ion batteries via the novel electron transport catalytic role of polyaniline (PANI) in PANI/Co3O4−CuO raspberry as new anode material. J. Appl. Electrochem. 2019, 49, 327–340.

    Article  CAS  Google Scholar 

  40. Li, Z. H.; Ding, X. S.; Feng, W.; Han, B. H. Aligned artificial solid electrolyte interphase layers as versatile interfacial stabilizers on lithium metal anodes. J. Mater. Chem. A 2022, 10, 10474–10483.

    Article  CAS  Google Scholar 

  41. Chen, X. D.; Li, Y. S.; Wang, L.; Xu, Y.; Nie, A. M.; Li, Q. Q.; Wu, F.; Sun, W. W.; Zhang, X.; Vajtai, R. et al. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv. Mater. 2019, 31, 1901640.

    Article  Google Scholar 

  42. Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 2017, 29, 1605531.

    Article  Google Scholar 

  43. Yin, Y. C.; Wang, Q.; Yang, J. T.; Li, F.; Zhang, G. Z.; Jiang, C. H.; Mo, H. S.; Yao, J. S.; Wang, K. H.; Zhou, F. et al. Metal chloride perovskite thin film based interfacial layer for shielding lithium metal from liquid electrolyte. Nat. Commun. 2020, 11, 1761.

    Article  CAS  Google Scholar 

  44. Fan, L. S.; Sun, B.; Yan, K.; Xiong, P.; Guo, X.; Guo, Z. K.; Zhang, N. Q.; Feng, Y. J.; Sun, K. N.; Wang, G. X. A dual-protective artificial interface for stable lithium metal anodes. Adv. Energy Mater. 2021, 11, 2102242.

    Article  CAS  Google Scholar 

  45. Wang, T. Y.; Li, Y. B.; Zhang, J. Q.; Yan, K.; Jaumaux, P.; Yang, J.; Wang, C. Y.; Shanmukaraj, D.; Sun, B.; Armand, M. et al. Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nat. Commun. 2020, 11, 5429.

    Article  Google Scholar 

  46. Liu, H.; Cheng, X. B.; Xu, R.; Zhang, X. Q.; Yan, C.; Huang, J. Q.; Zhang, Q. Plating/stripping behavior of actual lithium metal anode. Adv. Energy Mater. 2019, 9, 1902254.

    Article  CAS  Google Scholar 

  47. Huang, Y. K.; Pan, R. J.; Rehnlund, D.; Wang, Z. H.; Nyholm, L. First-cycle oxidative generation of lithium nucleation sites stabilizes lithium-metal electrodes. Adv. Energy Mater. 2021, 11, 2003674.

    Article  CAS  Google Scholar 

  48. Xiong, X. S.; Sun, R.; Yan, W. Q.; Qiao, Q.; Zhu, Y. S.; Liu, L. L.; Fu, L. J.; Yu, N. F.; Wu, Y. P.; Wang, B. A lithiophilic AlN-modified copper layer for high-performance lithium metal anode. J. Mater. Chem. A 2022, 10, 13814–13820.

    Article  CAS  Google Scholar 

  49. Ye, H.; Zheng, Z. J.; Yao, H. R.; Liu, S. C.; Zuo, T. T.; Wu, X. W.; Yin, Y. X.; Li, N. W.; Gu, J. J.; Cao, F. F. et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew. Chem., Int. Ed. 2019, 58, 1094–1099.

    Article  CAS  Google Scholar 

  50. You, J. H.; Zhang, S. J.; Deng, L.; Li, M. Z.; Zheng, X. M.; Li, J. T.; Zhou, Y.; Huang, L.; Sun, S. G. Suppressing Li dendrite by a protective biopolymeric film from tamarind seed polysaccharide for high-performance Li metal anode. Electrochim. Acta 2019, 299, 636–644.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Key Research and Development Program of China (No. 2021YFB2400400), the National Natural Science Foundation of China (No. 52073143, Key Project (No. 52131306), Distinguished Youth Scientists Project (No. 51425301)), the State Key Lab Research Foundation (Nos. ZK201805 and ZK201717), the Project on Carbon Emission Peak and Neutrality of Jiangsu Province (No. BE2022031-4), the Natural Science Foundation of Jiangsu Province (Nos. BK20200696, BK20200768, and 20KJB430019), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_1072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiongwei Wu or Yuping Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Qiao, Q., Zhou, Q. et al. Constructing a lithiophilic polyaniline coating via in situ polymerization for dendrite-free lithium metal anode. Nano Res. 16, 8448–8456 (2023). https://doi.org/10.1007/s12274-022-5370-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5370-7

Keywords

Navigation