Skip to main content
Log in

Bio-organic adaptive photonic crystals enable supramolecular solvatochromism

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photonic crystals (PCs) exhibit promising structural coloration properties and possess extensive application prospects in diverse optical fields. However, state-of-the-art inorganic or polymeric PCs show limited adaptivity as their configurations are fixed once formed. Herein, bio-organic adaptive PCs are fabricated via drop-casting of amphiphilic guanine-based peptide nucleic acid self-assembled microspheres. The high formation activation energy of up to 81.8 kJ·mol−1 suggests that the self-assembly step dominates the entire process. Therefore, the configurations along with the structural coloration of the supramolecular PCs are sensitive to self-assembly influencing parameters, showing temperature-encoded structural color evolution and solvent polarity-dependent solvatochromism. Our findings demonstrate that the supramolecular PCs are adaptive, thus showing promising potential for detection of organic solvents of different polarities in a visual and real-time manner for environmental protection or optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakoda, K. Optical response of photonic crystals. In Optical Properties of Photonic Crystals; 2nd ed. Sakoda, K., Ed.; Springer: Berlin, 2005; pp 99–123.

    Google Scholar 

  2. Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149.

    CAS  Google Scholar 

  3. Cai, Z. Y.; Li, Z. W.; Ravaine, S.; He, M. X.; Song, Y. L.; Yin, Y. D.; Zheng, H. B.; Teng, J. H.; Zhang, A. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898–5951.

    CAS  Google Scholar 

  4. Chen, F. X.; Huang, Y.; Li, R.; Zhang, S. L.; Wang, B. S.; Zhang, W. S.; Wu, X. K.; Jiang, Q. Y.; Wang, F.; Zhang, R. F. Bio-inspired structural colors and their applications. Chem. Commun. 2021, 57, 13448–13464.

    CAS  Google Scholar 

  5. Zhao, Y. J.; Xie, Z. Y.; Gu, H. C.; Zhu, C.; Gu, Z. Z. Bio-inspired variable structural color materials. Chem. Soc. Rev. 2022, 41, 3297–3317.

    Google Scholar 

  6. Wang, J. X.; Zhang, Y. Z.; Wang, S. T.; Song, Y. L.; Jiang, L. Bioinspired colloidal photonic crystals with controllable wettability. Acc. Chem. Res. 2011, 44, 405–415.

    CAS  Google Scholar 

  7. Tadepalli, S.; Slocik, J. M.; Gupta, M. K.; Naik, R. R.; Singamaneni, S. Bio-optics and bio-inspired optical materials. Chem. Rev. 2017, 117, 12705–12763.

    CAS  Google Scholar 

  8. Graydon, O. The fish that beat physics. Nat. Photonics 2012, 6, 794.

    Google Scholar 

  9. Wu, P. P.; Wang, J. X.; Jiang, L. Bio-inspired photonic crystal patterns. Mater. Horiz. 2020, 7, 338–365.

    CAS  Google Scholar 

  10. Lee, G. H.; Choi, T. M.; Kim, B.; Han, S. H.; Lee, J. M.; Kim, S. H. Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano 2017, 11, 11350–11357.

    CAS  Google Scholar 

  11. Vatankhah-Varnosfaderani, M.; Keith, A. N.; Cong, Y. D.; Liang, H. Y.; Rosenthal, M.; Sztucki, M.; Clair, C.; Magonov, S.; Ivanov, D. A.; Dobrynin, A. V. et al. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science 2018, 359, 1509–1513.

    CAS  Google Scholar 

  12. Narkevicius, A.; Parker, R. M.; Ferrer-Orri, J.; Parton, T. G.; Lu, Z. H.; van de Kerkhof, G. T.; Frka-Petesic, B.; Vignolini, S. Revealing the structural coloration of self-assembled chitin nanocrystal films. Adv. Mater. 2022, 34, 2203300.

    CAS  Google Scholar 

  13. Palmer, B. A.; Taylor, G. J.; Brumfeld, V.; Gur, D.; Shemesh, M.; Elad, N.; Osherov, A.; Oron, D.; Weiner, S.; Addadi, L. The image-forming mirror in the eye of the scallop. Science 2017, 358, 1172–1175.

    CAS  Google Scholar 

  14. Teyssier, J.; Saenko, S. V.; van der Marel, D.; Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368.

    CAS  Google Scholar 

  15. Jia, Z. A.; Fernandes, M. C.; Deng, Z. F.; Yang, T.; Zhang, Q. T.; Lethbridge, A.; Yin, J.; Lee, J. H.; Han, L.; Weaver, J. C. et al. Microstructural design for mechanical-optical multifunctionality in the exoskeleton of the flower beetle Torynorrhina flammea. Proc. Natl. Acad. Sci. USA 2021, 118, e2101017118.

    CAS  Google Scholar 

  16. Kreysing, M.; Pusch, R.; Haverkate, D.; Landsberger, M.; Engelmann, J.; Ruiter, J.; Mora-Ferrer, C.; Ulbricht, E.; Grosche, J.; Franze, K. et al. Photonic crystal light collectors in fish retina improve vision in turbid water. Science 2012, 336, 1700–1703.

    CAS  Google Scholar 

  17. Lin, D. Q.; Liu, J.; Zhang, H.; Qian, Y.; Yang, H.; Liu, L. H.; Ren, A.; Zhao, Y. S.; Yu, X.; Wei, Y. et al. Gridization-driven mesoscale self-assembly of conjugated nanopolymers into luminescence-anisotropic photonic crystals. Adv. Mater. 2022, 34, 2109399.

    CAS  Google Scholar 

  18. Guo, Q. L.; Li, Y. L.; Liu, Q. J.; Li, Y. S.; Song, D. P. Janus photonic microspheres with bridged lamellar structures via droplet-confined block copolymer co-assembly. Angew. Chem., Int. Ed. 2022, 61, e202113759.

    CAS  Google Scholar 

  19. Chen, X.; Yang, X.; Song, D. P.; Men, Y. F.; Li, Y. S. Discovery and insights into organized spontaneous emulsification via interfacial self-assembly of amphiphilic bottlebrush block copolymers. Macromolecules 2021, 54, 3668–3677.

    CAS  Google Scholar 

  20. Gur, D.; Palmer, B. A.; Weiner, S.; Addadi, L. Light manipulation by guanine crystals in organisms: Biogenic scatterers, mirrors, multilayer reflectors and photonic crystals. Adv. Funct. Mater. 2017, 27, 1603514.

    Google Scholar 

  21. Berger, O.; Adler-Abramovich, L.; Levy-Sakin, M.; Grunwald, A.; Liebes-Peer, Y.; Bachar, M.; Buzhansky, L.; Mossou, E.; Forsyth, V. T.; Schwartz, T. et al. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson-Crick base pairing. Nat. Nanotechnol. 2015, 10, 353–360.

    CAS  Google Scholar 

  22. Berger, O.; Yoskovitz, E.; Adler-Abramovich, L.; Gazit, E. Spectral transition in bio-inspired self-assembled peptide nucleic acid photonic crystals. Adv. Mater. 2016, 28, 2195–2200.

    CAS  Google Scholar 

  23. Wang, X. H.; Li, Y. C.; Zheng, J. Y.; Li, X. Y.; Liu, G. J.; Zhou, L.; Zhou, W. L.; Shao, J. Z. Polystyrene@poly(methyl methacrylate-butyl acrylate) core-shell nanoparticles for fabricating multifunctional photonic crystal films as mechanochromic and solvatochromic sensors. ACS Appl. Nano Mater. 2022, 5, 729–736.

    CAS  Google Scholar 

  24. Duan, L. L.; You, B.; Zhou, S. X.; Wu, L. M. Self-assembly of polymer colloids and their solvatochromic-responsive properties. J. Mater. Chem. 2011, 21, 687–692.

    CAS  Google Scholar 

  25. Dong, X.; Wu, P.; Schaefer, C. G.; Zhang, L. W.; Finlayson, C. E.; Wang, C. C. Solvatochromism based on structural color: Smart polymer composites for sensing and security. Mater. Des. 2018, 160, 417–426.

    CAS  Google Scholar 

  26. Zhang, Y. Q.; Fu, Q. Q.; Ge, J. P. Photonic sensing of organic solvents through geometric study of dynamic reflection spectrum. Nat. Commun. 2015, 6, 7510.

    CAS  Google Scholar 

  27. Berger, O.; Adler-Abramovich, L.; Gazit, E. Self-assembled peptide nucleic acids. U.S. Patent 10446768B2, October 15, 2019.

  28. Wang, J.; Liu, K.; Xing, R. R.; Yan, X. H. Peptide self-assembly: Thermodynamics and kinetics. Chem. Soc. Rev. 2016, 45, 5589–5604.

    CAS  Google Scholar 

  29. Sun, B. B.; Tao, K.; Jia, Y.; Yan, X. H.; Zou, Q. L.; Gazit, E.; Li, J. B. Photoactive properties of supramolecular assembled short peptides. Chem. Soc. Rev. 2019, 48, 4387–4400.

    CAS  Google Scholar 

  30. Zhang, J. H.; Wang, Y. C.; Rodriguez, B. J.; Yang, R. S.; Yu, B.; Mei, D. Q.; Li, J. B.; Tao, K.; Gazit, E. Microfabrication of peptide self-assemblies: Inspired by nature towards applications. Chem. Soc. Rev. 2022, 51, 6936–6947.

    CAS  Google Scholar 

  31. Arnon, Z. A.; Pinotsi, D.; Schmidt, M.; Gilead, S.; Guterman, T.; Sadhanala, A.; Ahmad, S.; Levin, A.; Walther, P.; Kaminski, C. F. et al. Opal-like multicolor appearance of self-assembled photonic array. ACS Appl. Mater. Interfaces 2018, 10, 20783–20789.

    CAS  Google Scholar 

  32. Patel, B. B.; Walsh, D. J.; Kim, D. H.; Kwok, J.; Lee, B.; Guironnet, D.; Diao, Y. Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. Sci. Adv. 2020, 6, eaaz7202.

    CAS  Google Scholar 

  33. Li, Y. J.; Whyburn, G. P.; Huang, Y. Specific peptide regulated synthesis of ultrasmall platinum nanocrystals. J. Am. Chem. Soc. 2009, 131, 15998–15999.

    CAS  Google Scholar 

  34. Liu, X. C.; Fei, J. B.; Wang, A. H.; Cui, W.; Zhu, P. L.; Li, J. B. Transformation of dipeptide-based organogels into chiral crystals by cryogenic treatment. Angew. Chem., Int. Ed. 2017, 56, 2660–2663.

    CAS  Google Scholar 

  35. Tao, K.; Tang, Y. M.; Rencus-Lazar, S.; Yao, Y. F.; Xue, B.; Gilead, S.; Wei, G. H.; Gazit, E. Bioinspired supramolecular packing enables high thermo-sustainability. Angew. Chem., Int. Ed. 2020, 59, 19037–19041.

    CAS  Google Scholar 

  36. Tikhonova, T. N.; Rovnyagina, N. N.; Arnon, Z. A.; Yakimov, B. P.; Efremov, Y. M.; Cohen-Gerassi, D.; Halperin-Sternfeld, M.; Kosheleva, N. V.; Drachev, V. P.; Svistunov, A. A. et al. Mechanical enhancement and kinetics regulation of Fmoc-diphenylalanine hydrogels by thioflavin T. Angew. Chem., Int. Ed. 2021, 60, 25339–25345.

    CAS  Google Scholar 

  37. Buell, A. K.; Dhulesia, A.; White, D. A.; Knowles, T. P. J.; Dobson, C. M.; Welland, M. E. Detailed analysis of the energy barriers for amyloid fibril growth. Angew. Chem., Int. Ed. 2012, 51, 5247–5251.

    CAS  Google Scholar 

  38. Yuan, C. Q.; Ji, W.; Xing, R. R.; Li, J. B.; Gazit, E.; Yan, X. H. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 2019, 3, 567–588.

    CAS  Google Scholar 

  39. Herling, T. W.; Garcia, G. A.; Michaels, T. C. T.; Grentz, W.; Dean, J.; Shimanovich, U.; Gang, H.; Müller, T.; Kav, B.; Terentjev, E. M. et al. Force generation by the growth of amyloid aggregates. Proc. Natl. Acad. Sci. USA 2015, 112, 9524–9529.

    CAS  Google Scholar 

  40. Tao, K.; Fan, Z.; Sun, L. M.; Makam, P.; Tian, Z.; Ruegsegger, M.; Shaham-Niv, S.; Hansford, D.; Aizen, R.; Pan, Z. et al. Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nat. Commun. 2018, 9, 3217.

    Google Scholar 

  41. Foelen, Y.; Schenning, A. P. H. J. Optical indicators based on structural colored polymers. Adv. Sci. 2022, 5, 2200399.

    Google Scholar 

  42. Suppan, P. Invited review solvatochromic shifts: The influence of the medium on the energy of electronic states. J. Photochem. Photobiol. A Chem. 1990, 50, 293–330.

    CAS  Google Scholar 

  43. Wang, Y. L.; Cui, H. Q.; Zhao, Q. L.; Du, X. M. Chameleon-inspired structural-color actuators. Matter 2019, 1, 626–638.

    Google Scholar 

  44. Yang, W. H.; Xiao, S. M.; Song, Q. H.; Liu, Y. L.; Wu, Y. K.; Wang, S.; Yu, J.; Han, J. C.; Tsai, D. P. All-dielectric metasurface for high-performance structural color. Nat. Commun. 2020, 11, 1864.

    CAS  Google Scholar 

  45. Reichardt, C.; Welton, T. Solvent effects on the absorption spectra of organic compounds. In Solvents and Solvent Effects in Organic Chemistry; 4th ed. Reichardt, C.; Welton, T., Eds.; Wiley-VCH Publishers: Weinheim, 2011; pp 359–424.

    Google Scholar 

  46. Ariga, K.; Jia, X. F.; Song, J. W.; Hill, J. P.; Leong, D. T.; Jia, Y.; Li, J. B. Nanoarchitectonics beyond self-assembly: Challenges to create bio-like hierarchic organization. Angew. Chem., Int. Ed. 2020, 59, 15424–15446.

    CAS  Google Scholar 

  47. Sheehan, F.; Sementa, D.; Jain, A.; Kumar, M.; Tayarani-Najjaran, M.; Kroiss, D.; Ulijn, R. V. Peptide-based supramolecular systems chemistry. Chem. Rev. 2021, 121, 13869–13914.

    CAS  Google Scholar 

  48. Du, X. W.; Zhou, J.; Shi, J. F.; Xu, B. Supramolecular hydrogelators and hydrogels: From soft matter to molecular biomaterials. Chem. Rev. 2015, 115, 13165–13307.

    CAS  Google Scholar 

  49. Avitabile, C.; Diaferia, C.; Ventura, B. D.; Mercurio, F. A.; Leone, M.; Roviello, V.; Saviano, M.; Velotta, R.; Morelli, G.; Accardo, A. et al. Self-assembling of Fmoc-GC peptide nucleic acid dimers into highly fluorescent aggregates. Chem.—Eur. J. 2018, 24, 4729–4735.

    CAS  Google Scholar 

  50. Borthwick, A. D. 2, 5-diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 2012, 112, 3641–3716.

    CAS  Google Scholar 

  51. Chin, S. M.; Synatschke, C. V.; Liu, S. P.; Nap, R. J.; Sather, N. A.; Wang, Q. F.; Álvarez, Z.; Edelbrock, A. N.; Fyrner, T.; Palmer, L. C. et al. Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators. Nat. Commun. 2018, 9, 2395.

    Google Scholar 

  52. Levin, A.; Hakala, T. A.; Schnaider, L.; Bernardes, G. J. L.; Gazit, E.; Knowles, T. P. J. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 2020, 4, 615–634.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFE0100800) and the National Natural Science Foundation of China (No. 52175551). The authors thank the members of the laboratories for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ehud Gazit or Kai Tao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, Y., Wang, Y. et al. Bio-organic adaptive photonic crystals enable supramolecular solvatochromism. Nano Res. 16, 12092–12097 (2023). https://doi.org/10.1007/s12274-022-5331-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5331-1

Keywords

Navigation