Skip to main content
Log in

High-performance self-powered ultraviolet to near-infrared photodetector based on WS2/InSe van der Waals heterostructure

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

van der Waals heterostructures (vdWHs) based on two-dimensional (2D) materials without the crystal lattice matching constraint have great potential for high-performance optoelectronic devices. Herein, a WS2/InSe vdWH photodiode is proposed and fabricated by precisely stacking InSe and WS2 flakes through an all-dry transfer method. The WS2/InSe vdWH forms an n—n heterojunction with strong built-in electric field due to their intrinsic n-type semiconductor characteristics and energy-band alignments with a large Fermi level offset between WS2 and InSe. As a result, the device displays excellent photovoltaic behavior with a large open voltage of 0.47 V and a short-circuit current of 11.7 nA under 520 nm light illumination. Significantly, a fast rising/decay time of 63/76 µs, a large light on/off ratio of 105, a responsivity of 61 mA/W, a high detectivity of 2.5 × 1011 Jones, and a broadband photoresponse ranging from ultraviolet to near-infrared (325–980 nm) are achieved at zero bias. This study provides a strategy for developing high-performance self-powered broadband photodetectors based on 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.

    CAS  Google Scholar 

  2. Mueller, T.; Xia, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301.

    CAS  Google Scholar 

  3. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.

    CAS  Google Scholar 

  4. Xu, Y. J.; Liu, C. L.; Guo, C.; Yu, Q.; Guo, W. L.; Lu, W.; Chen, X. S.; Wang, L.; Zhang, K. High performance near infrared photodetector based on in-plane black phosphorus p-n homojunction. Nano Energy 2020, 70, 104518.

    CAS  Google Scholar 

  5. Hu, P. A.; Wen, Z. Z.; Wang, L. F.; Tan, P. H.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988–5994.

    CAS  Google Scholar 

  6. Jiang, J.; Wen, Y.; Wang, H.; Yin, L.; Cheng, R. Q.; Liu, C. S.; Feng, L. P.; He, J. Recent advances in 2D materials for photodetectors. Adv. Electron. Mater. 2021, 7, 2001125.

    CAS  Google Scholar 

  7. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

    CAS  Google Scholar 

  8. Pak, S.; Lee, J.; Lee, Y. W.; Jang, A. R.; Ahn, S.; Ma, K. Y.; Cho, Y.; Hong, J.; Lee, S.; Jeong, H. Y. et al. Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer. Nano Lett. 2017, 17, 5634–5640.

    CAS  Google Scholar 

  9. Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

    CAS  Google Scholar 

  10. Hu, S. Q.; Xu, J. P.; Zhao, Q. H.; Luo, X. G.; Zhang, X. T.; Wang, T.; Jie, W. Q.; Cheng, Y. C.; Frisenda, R.; Castellanos-Gomez, A. et al. Gate-switchable photovoltaic effect in BP/MoTe2 van der Waals heterojunctions for self-driven logic optoelectronics. Adv. Opt. Mater. 2021, 9, 2001802.

    CAS  Google Scholar 

  11. Svatek, S. A.; Bueno-Blanco, C.; Lin, D. Y.; Kerfoot, J.; Macías, C.; Zehender, M. H.; Tobías, I.; García-Linares, P.; Taniguchi, T.; Watanabe, K. et al. High open-circuit voltage in transition metal dichalcogenide solar cells. Nano Energy 2021, 79, 105427.

    CAS  Google Scholar 

  12. Huang, X.; Feng, X. W.; Chen, L.; Wang, L.; Tan, W. C.; Huang, L.; Ang, K. W. Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure. Nano Energy 2019, 62, 667–673.

    CAS  Google Scholar 

  13. Wang, X. T.; Huang, L.; Peng, Y. T.; Huo, N. J.; Wu, K. D.; Xia, C. X.; Wei, Z. M.; Tongay, S.; Li, J. B. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p-n heterojunctions. Nano Res. 2016, 9, 507–516.

    CAS  Google Scholar 

  14. Zhong, J. H.; Wu, B.; Madoune, Y.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance. Nano Res. 2022, 15, 2489–2496.

    CAS  Google Scholar 

  15. Lu, Y. Y.; Guo, C. R.; Yeh, H. L.; Chen, H. W.; Kuo, C. C.; Hsu, J. H.; Jhou, J.; Huang, Y. T.; Hsieh, S. H.; Chen, C. H. et al. Multilayer GaSe/InSe heterointerface-based devices for charge transport and optoelectronics. ACS Appl. Nano Mater. 2020, 3, 11769–11776.

    CAS  Google Scholar 

  16. Xu, Z. J.; Lin, S. S.; Li, X. Q.; Zhang, S. J.; Wu, Z. Q.; Xu, W. L.; Lu, Y. H.; Xu, S. Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity. Nano Energy 2016, 23, 89–96.

    CAS  Google Scholar 

  17. Jia, C.; Huang, X. W.; Wu, D.; Tian, Y. Z.; Guo, J. W.; Zhao, Z. H.; Shi, Z. F.; Tian, Y. T.; Jie, J. S.; Li, X. J. An ultrasensitive self-driven broadband photodetector based on a 2D-WS2/GaAs type-II Zener heterojunction. Nanoscale 2020, 12, 4435–4444.

    CAS  Google Scholar 

  18. Feng, W.; Jin, Z.; Yuan, J.; Zhang, J.; Jia, S.; Dong, L.; Yoon, J.; Zhou, L.; Vajtai, R.; Tour, J. M. et al. A fast and zero-biased photodetector based on GaTe-InSe vertical 2D p-n heterojunction. 2D Mater. 2018, 5, 25008.

    Google Scholar 

  19. Tian, W.; Wang, Y. D.; Chen, L.; Li, L. Self-powered nanoscale photodetectors. Small 2017, 13, 1701848.

    Google Scholar 

  20. Qiao, H.; Huang, Z. Y.; Ren, X. H.; Liu, S. H.; Zhang, Y. P.; Qi, X.; Zhang, H. Self-powered photodetectors based on 2D materials. Adv. Opt. Mater. 2020, 8, 1900765.

    CAS  Google Scholar 

  21. Lv, L.; Yu, J.; Hu, M.; Yin, S. M.; Zhuge, F. W.; Ma, Y.; Zhai, T. Y. Design and tailoring of two-dimensional Schottky, PN and tunnelling junctions for electronics and optoelectronics. Nanoscale 2021, 13, 6713–6751.

    CAS  Google Scholar 

  22. Gong, F.; Fang, H. H.; Wang, P.; Su, M.; Li, Q.; Ho, J. C.; Chen, X. S.; Lu, W.; Liao, L.; Wang, J. et al. Visible to near-infrared photodetectors based on MoS2 vertical Schottky junctions. Nanotechnology 2017, 28, 484002.

    Google Scholar 

  23. Dai, M. J.; Chen, H. Y.; Wang, F. K.; Long, M. S.; Shang, H. M.; Hu, Y. X.; Li, W.; Ge, C. Y.; Zhang, J.; Zhai, T. Y. et al. Ultrafast and sensitive self-powered photodetector featuring self-limited depletion region and fully depleted channel with van der Waals contacts. ACS Nano 2020, 13, 9098–9106.

    Google Scholar 

  24. Lin, P.; Yang, J. K. Tunable WSe2/WS2van der Waals heterojunction for self-powered photodetector and photovoltaics. J. Alloys Compd. 2020, 842, 155890.

    CAS  Google Scholar 

  25. Zhao, S. W.; Wu, J. C.; Jin, K.; Ding, H. Y.; Li, T. S.; Wu, C. Z.; Pan, N.; Wang, X. P. Highly polarized and fast photoresponse of black phosphorus-InSe vertical p-n heterojunctions. Adv. Funct. Mater. 2018, 28, 1802011.

    Google Scholar 

  26. Kim, C. O.; Kim, S.; Shin, D. H.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Joo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S. H. et al. High photoresponsivity in an all-graphene p-n vertical junction photodetector. Nat. Commun. 2014, 5, 3249.

    Google Scholar 

  27. Lv, Q. S.; Yan, F. G.; Wei, X.; Wang, K. Y. High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2heterojunction. Adv. Opt. Mater. 2018, 6, 1700490.

    Google Scholar 

  28. Zhao, Q. H.; Jie, W. Q.; Wang, T.; Castellanos-Gomez, A.; Frisenda, R. InSe Schottky diodes based on van der Waals contacts. Adv. Funct. Mater. 2020, 30, 2001307.

    CAS  Google Scholar 

  29. Han, L. X.; Yang, M. M.; Wen, P. T.; Gao, W.; Huo, N. J.; Li, J. B. A high performance self-powered photodetector based on a 1D Te-2D WS2 mixed-dimensional heterostructure. Nanoscale Adv. 2021, 3, 2657–2665.

    CAS  Google Scholar 

  30. Chen, P.; Pi, L. J.; Li, Z. X.; Wang, H. Y.; Xu, X.; Li, D. Y.; Zhou, X.; Zhai, T. Y. GeSe/MoTe2 vdW heterostructure for UV-VIS-NIR photodetector with fast response. Appl. Phys. Lett. 2022, 121, 21103.

    CAS  Google Scholar 

  31. Yin, J.; Liu, L.; Zang, Y. S.; Ying, A. N.; Hui, W. J.; Jiang, S. S.; Zhang, C. Q.; Yang, T.; Chueh, Y. L.; Li, J. et al. Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors. Light Sci. Appl. 2021, 10, 113.

    CAS  Google Scholar 

  32. Hu, S. Q.; Luo, X. G.; Xu, J. P.; Zhao, Q. H.; Cheng, Y. C.; Wang, T.; Jie, W. Q.; Castellanos-Gomez, A.; Gan, X. T.; Zhao, J. L. Reconfigurable InSe electronics with van der Waals integration. Adv. Electron. Mater. 2022, 8, 2101176.

    CAS  Google Scholar 

  33. Huang, Y.; Zhuge, F. W.; Hou, J. X.; Lv, L.; Luo, P.; Zhou, N.; Gan, L.; Zhai, T. Y. Van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano 2018, 12, 4062–4073.

    CAS  Google Scholar 

  34. Tan, C. Y.; Wang, H. H.; Zhu, X. D.; Gao, W. S.; Li, H.; Chen, J. W.; Li, G.; Chen, L. J.; Xu, J. M.; Hu, X. Z. et al. A self-powered photovoltaic photodetector based on a lateral WSe2-WSe2homojunction. ACS Appl. Mater. Interfaces 2020, 12, 44934–44942.

    CAS  Google Scholar 

  35. Wu, F.; Li, Q.; Wang, P.; Xia, H.; Wang, Z.; Wang, Y.; Luo, M.; Chen, L.; Chen, F. S.; Miao, J. S. et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat. Commun. 2019, 10, 4663.

    Google Scholar 

  36. Zhao, Q. H.; Wang, W.; Carrascoso-Plana, F.; Jie, W. Q.; Wang, T.; Castellanos-Gomez, A.; Frisenda, R. The role of traps in the photocurrent generation mechanism in thin InSe photodetectors. Mater. Horiz. 2020, 7, 252–262.

    CAS  Google Scholar 

  37. Duan, J. M.; Chava, P.; Ghorbani-Asl, M.; Lu, Y. F.; Erb, D.; Hu, L.; Echresh, A.; Rebohle, L.; Erbe, A.; Krasheninnikov, A. V. et al. Self-driven broadband photodetectors based on MoSe2/FePS3 van der Waals n-p type-II heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 11927–11936.

    CAS  Google Scholar 

  38. Chen, X. X.; Yang, X.; Lou, Q.; Tian, Y. Z.; Liu, Z. Y.; Lv, C. F.; Chen, Y. C.; Dong, L.; Shan, C. X. Ultrasensitive broadband position-sensitive detector based on graphitic carbon nitride. Nano Res., in press, https://doi.org/10.1007/s12274-022-4780-x.

  39. Chen, Y. C.; Yang, X.; Zhang, Y.; Chen, X. X.; Sun, J. L.; Xu, Z. Y.; Li, K. Y.; Dong, L.; Shan, C. X. Ultra-sensitive flexible Ga2O3 solarblind photodetector array realized via ultra-thin absorbing medium. Nano Res. 2022, 15, 3711–3719.

    CAS  Google Scholar 

  40. Wang, L.; Huang, L.; Tan, W. C.; Feng, X. W.; Chen, L.; Huang, X.; Ang, K. W. 2D photovoltaic devices: Progress and prospects. Small Methods 2018, 2, 1700294.

    Google Scholar 

  41. Shi, L. L.; Chen, K. Q.; Zhai, A. P.; Li, G. H.; Fan, M. M.; Hao, Y. Y.; Zhu, F. R.; Zhang, H.; Cui, Y. X. Status and outlook of metal-inorganic semiconductor-metal photodetectors. Laser Photonics Rev. 2021, 15, 2000401.

    CAS  Google Scholar 

  42. Xu, Q.; Yang, Z.; Peng, D. F.; Xi, J. G.; Lin, P.; Cheng, Y.; Liu, K. H.; Pan, C. F. WS2/CsPbBr3 van der Waals heterostructure planar photodetectors with ultrahigh on/off ratio and piezo-phototronic effect-induced strain-gated characteristics. Nano Energy 2019, 65, 104001.

    CAS  Google Scholar 

  43. Wang, H. Y.; Wang, W.; Zhong, Y. L.; Li, D. Y.; Li, Z. X.; Xu, X.; Song, X. Y.; Chen, Y. X.; Huang, P.; Mei, A. Y. et al. Approaching the external quantum efficiency limit in 2D photovoltaic devices. Adv. Mater. 2022, 34, 2206122.

    CAS  Google Scholar 

  44. Yan, Y. F.; Abbas, G.; Li, F.; Li, Y.; Zheng, B. F.; Wang, H. D.; Liu, F. S. Self-driven high performance broadband photodetector based on SnSe/InSe van der Waals heterojunction. Adv. Mater. Interfaces 2022, 9, 2102068.

    CAS  Google Scholar 

  45. Kwak, D. H.; Ra, H. S.; Jeong, M. H.; Lee, A. Y.; Lee, J. S. Highperformance photovoltaic effect with electrically balanced charge carriers in black phosphorus and WS2 heterojunction. Adv. Mater. Interfaces 2018, 5, 1800671.

    Google Scholar 

  46. Ning, J.; Zhou, Y.; Zhang, J. C.; Lu, W.; Dong, J. G.; Yan, C. C.; Wang, D.; Shen, X.; Feng, X.; Zhou, H. et al. Self-driven photodetector based on a GaSe/MoSe2 selenide van der Waals heterojunction with the hybrid contact. Appl. Phys. Lett. 2020, 117, 163104.

    CAS  Google Scholar 

  47. Wang, H. M.; Wang, Y. R.; Li, X.; Liu, X. L.; Zheng, X.; Shi, Y. Q.; Xu, M. X.; Zhang, J.; Zhang, Q. Self-powered photodetectors based on stacked WSe2/graphene/SnS2 p-g-n heterostructures. J. Alloys Compd. 2022, 920, 165974.

    CAS  Google Scholar 

  48. Chen, Y. F.; Wang, Y.; Wang, Z.; Gu, Y.; Ye, Y.; Chai, X. L.; Ye, J. F.; Chen, Y.; Xie, R. Z.; Zhou, Y. et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 2021, 4, 357–363.

    CAS  Google Scholar 

  49. Yan, Y.; Li, S. S.; Du, J.; Yang, H.; Wang, X. T.; Song, X. H.; Li, L. X.; Li, X. P.; Xia, C. X.; Liu, Y. F. et al. Reversible half wave rectifier based on 2D InSe/GeSe heterostructure with near-broken band alignment. Adv. Sci. 2021, 8, 1903252.

    CAS  Google Scholar 

  50. Mudd, G. W.; Svatek, S. A.; Hague, L.; Makarovsky, O.; Kudrynskyi, Z. R.; Mellor, C. J.; Beton, P. H.; Eaves, L.; Novoselov, K. S.; Kovalyuk, Z. D. et al. High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures. Adv. Mater. 2015, 27, 3760–3766.

    CAS  Google Scholar 

  51. Liu, J.; Lo, T. W.; Sun, J. H.; Yip, C. T.; Lam, C. H.; Lei, D. Y. A comprehensive comparison study on the vibrational and optical properties of CVD-grown and mechanically exfoliated few-layered WS2. J. Mater. Chem. C 2017, 5, 11239–11245.

    CAS  Google Scholar 

  52. Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11734005, 61821002, 62075041, 12004069, and 62204157), the National Key Research and Development Program of China (Nos. 2018YFA0209101 and 2017YFA0700500), and the Fundamental Research Funds for the Central Universities (No. 2242021k10009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zengliang Shi or Chunxiang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, Z., Ma, Y. et al. High-performance self-powered ultraviolet to near-infrared photodetector based on WS2/InSe van der Waals heterostructure. Nano Res. 16, 7851–7857 (2023). https://doi.org/10.1007/s12274-022-5323-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5323-1

Keywords

Navigation