Skip to main content
Log in

Free radicals induced ultra-rapid synthesis of N-doped carbon sphere catalyst with boosted pyrrolic N active sites for efficient acetylene hydrochlorination

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Activated carbon-supported HgCl2 catalysts have seriously impeded the development of the polyvinyl chloride (PVC) industry due to the sublimation of Hg species and environmental pollution problems. Herein, the template-free and organic solvent-free strategy was devised to synthesize non-metallic based nitrogen-doped carbon (U-NC) sphere catalyst for acetylene hydrochlorination. This green strategy via ultrasonic chemistry initiates resin crosslinking reactions between aminophenol and formaldehyde resin by free radicals, leading to the ultra-rapid formation of U-NC with remarkably high pyrrolic N content in only 5 min. This U-NC catalyst exhibited an outstanding space-time-yield (1.6 gVCM·gcat1·h1), even comparable to the reported metallic catalyst. By combining kinetic analysis, advanced characterizations, and density functional theory, it is found that the amount of pyrrolic N is in linear with C2H2 conversion, and pyrrolic N in U-NC can effectively improve acetylene hydrochlorination performance by mediating HCl adsorption. This work sheds new light on rationally constructing metal-free catalyst for acetylene hydrochlorination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaiser, S. K.; Surin, I.; Amorós-Pérez, A.; Büchele, S.; Krumeich, F.; Clark, A. H.; Román-Martínez, M. C.; Lillo-Ródenas, M. A.; Pérez-Ramírez, J. Design of carbon supports for metal-catalyzed acetylene hydrochlorination. Nat. Commun. 2021, 12, 4016.

    CAS  Google Scholar 

  2. Zhu, M. Y.; Wang, Q. Q.; Chen, K.; Wang, Y.; Huang, C. F.; Dai, H.; Yu, F.; Kang, L. H.; Dai, B. Development of a heterogeneous non-mercury catalyst for acetylene hydrochlorination. ACS Catal. 2015, 5, 5306–5316.

    CAS  Google Scholar 

  3. Malta, G.; Kondrat, S. A.; Freakley, S. J.; Davies, C. J.; Lu, L.; Dawson, S.; Thetford, A.; Gibson, E. K.; Morgan, D. J.; Jones, W. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 2017, 355, 1399–1403.

    CAS  Google Scholar 

  4. Mei, S.; Gu, J. J.; Ma, T. Z.; Li, X. Y.; Hu, Y. B.; Li, W.; Zhang, J. L.; Han, Y. N-doped activated carbon from used dyeing wastewater adsorbent as a metal-free catalyst for acetylene hydrochlorination. Chem Eng J. 2019, 371, 118–129.

    CAS  Google Scholar 

  5. Tan, P.; Xue, D. M.; Zhu, J.; Jiang, Y.; He, Q. X.; Hou, Z. F.; Liu, X. Q.; Sun, L. B. Hierarchical N-doped carbons from designed N-rich polymer: Adsorbents with a record-high capacity for desulfurization. AIChE J. 2018, 64, 3786–3793.

    CAS  Google Scholar 

  6. Zhang, X. D.; Xu, Y.; Zhang, G. J.; Wu, C. L.; Liu, J.; Lv, Y. K. Nitrogen-doped porous carbons derived from sustainable biomass via a facile post-treatment nitrogen doping strategy: Efficient CO2 capture and DRM. Int. J. Hydrogen Energy 2022, 47, 24388–24397.

    CAS  Google Scholar 

  7. Han, Z. J.; Huang, C.; Meysami, S. S.; Piche, D.; Seo, D. H.; Pineda, S.; Murdock, A. T.; Bruce, P. S.; Grant, P. S.; Grobert, N. High-frequency supercapacitors based on doped carbon nanostructures. Carbon 2018, 126, 305–312.

    CAS  Google Scholar 

  8. Du, J.; Liu, L.; Yu, Y. F.; Hu, Z. P.; Zhang, Y.; Liu, B. B.; Chen, A. B. Tuning confined nanospace for preparation of N-doped hollow carbon spheres for high performance supercapacitors. ChemSusChem 2019, 12, 303–309.

    CAS  Google Scholar 

  9. Gao, Z. Y.; Liu, X.; Chang, J. L.; Wu, D. P.; Xu, F.; Zhang, L. C.; Du, W. M.; Jiang, K. Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor. J. Power Sources 2017, 337, 25–35.

    CAS  Google Scholar 

  10. Ding, G. H.; Li, Z. Q.; Wei, L. Z.; Yao, G.; Niu, H. L.; Wang, C. L.; Zheng, F. C.; Chen, Q. W. Regulating the sodium storage sites in nitrogen-doped carbon materials by sulfur-doping engineering for sodium ion batteries. Electrochim. Acta 2022, 424, 140645.

    CAS  Google Scholar 

  11. Yu, P. F.; Zhang, W. C.; Yang, Y. H.; Zheng, M. T.; Hu, H.; Xiao, Y.; Liu, Y. L.; Liang, Y. R. Facile construction of uniform ultramicropores in porous carbon for advanced sodium-ion battery. J. Colloid Interface Sci. 2021, 582, 852–858.

    CAS  Google Scholar 

  12. Sun, J. G.; Sun, Y.; Oh, J. A. S.; Gu, Q. L.; Zheng, W. D.; Goh, M.; Zeng, K. Y.; Cheng, Y.; Lu, L. Insight into the structure-capacity relationship in biomass derived carbon for high-performance sodium-ion batteries. J. Energy Chem. 2021, 62, 497–504.

    CAS  Google Scholar 

  13. Mao, S. J.; Wang, C. P.; Wang, Y. The chemical nature of N doping on N doped carbon supported noble metal catalysts. J. Catal. 2019, 375, 456–465.

    CAS  Google Scholar 

  14. Park, H. S.; Han, S. B.; Kwak, D. H.; Han, J. H.; Park, K. W. Fe nanoparticles encapsulated in doped graphitic shells as high-performance and stable catalysts for oxygen reduction reaction in an acid medium. J. Catal. 2019, 370, 130–137.

    CAS  Google Scholar 

  15. Li, X. Y.; Wang Y.; Kang L. H.; Zhu, M. Y.; Dai, B. A novel, non-metallic graphitic carbon nitride catalyst for acetylene hydrochlorination. J. Catal. 2014, 311, 288–294.

    CAS  Google Scholar 

  16. Liu, W. R.; Zhu, M. Y.; Dai, B. Nitrogen doped nanoflower porous carbon as a nonmetal catalyst for acetylene hydrochlorination. New J. Chem. 2018, 42, 20131–20136.

    CAS  Google Scholar 

  17. Li, X. Y.; Li, P.; Pan, X. L.; Ma, H.; Bao, X. H. Deactivation mechanism and regeneration of carbon nanocomposite catalyst for acetylene hydrochlorination. Appl. Catal. B: Environ. 2017, 210, 116–120.

    CAS  Google Scholar 

  18. Lin, R. H.; Kaiser, S. K.; Hauert, R.; Pérez-Ramírez, J. Descriptors for high-performance nitrogen-doped carbon catalysts in acetylene hydrochlorination. ACS Catal. 2018, 8, 1114–1121.

    CAS  Google Scholar 

  19. Zhao, J.; Wang, B. L.; Yue, Y. X.; Sheng, G. F.; Lai, H. X.; Wang, S. S.; Yu, L.; Zhang, Q. F.; Feng, F.; Hu, Z. T. et al. Nitrogen- and phosphorus-codoped carbon-based catalyst for acetylene hydrochlorination. J. Catal. 2019, 373, 240–249.

    CAS  Google Scholar 

  20. Duraisamy, V.; Venkateshwaran, S.; Thangamuthu, R.; Kumar, S. M. S. Hard template derived N, S dual heteroatom doped ordered mesoporous carbon as an efficient electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy, in press, https://doi.org/10.1016/j.ijhydene.2022.03.250.

  21. Hu, L. F.; Zhu, Q. Z.; Wu, Q.; Li, D. S.; An, Z. X.; Xu, B. Natural biomass-derived hierarchical porous carbon synthesized by an in situ hard template coupled with NaOH activation for ultrahigh rate supercapacitors. ACS Sustainable Chem. Eng. 2018, 6, 13949–13959.

    CAS  Google Scholar 

  22. Luo, W.; Zhao, T.; Li, Y. H.; Wei, J.; Xu, P. C.; Li, X. X.; Wang, Y. W.; Zhang, W. Q.; Elzatahry, A. A.; Alghamdi, A. et al. A micelle fusion-aggregation assembly approach to mesoporous carbon materials with rich active sites for ultrasensitive ammonia sensing. J. Am. Chem. Soc. 2016, 138, 12586–12595.

    CAS  Google Scholar 

  23. Allah, A. E.; Yamauchi, Y.; Wang, J.; Bando, Y.; Tan, H. B.; Farghali, A. A.; Khedr, M. H.; Alshehri, A.; Alghamdi, Y. G.; Martin, D. et al. Soft-templated synthesis of sheet-like nanoporous nitrogen-doped carbons for electrochemical supercapacitors. ChemElectroChem 2019, 6, 1901–1907.

    Google Scholar 

  24. Li, F.; Zhang, H. Y.; Zhang, M. M.; Li, L. F.; Yao, L. S.; Peng, W. C.; Zhang, J. L. Hollow carbon nanospheres decorated with abundant pyridinic N+O for efficient acetylene hydrochlorination. CSS Sustainable Chem. Eng. 2022, 10, 194–203.

    Google Scholar 

  25. Zhou, K.; Li, B.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Jia, J. C.; Zhao, M. Q.; Luo, G. H.; Su, D. S.; Wei, F. The catalytic pathways of hydrohalogenation over metal-free nitrogen-doped carbon nanotubes. ChemSusChem 2014, 7, 723–728.

    CAS  Google Scholar 

  26. Qiao, X. L.; Liu, X. Y.; Zhou, Z. Q.; Guan, Q. X.; Li, W. Constructing green mercury-free catalysts with single pyridinic N species for acetylene hydrochlorination and mechanism investigation. Catal. Sci. Technol. 2021, 11, 2327–2339.

    CAS  Google Scholar 

  27. Wang X.; Dai B.; Wang Y., Yu F. Nitrogen-doped pitch-based spherical active carbon as a nonmetal catalyst for acetylene hydrochlorination. ChemCatChem. 2014, 6, 2339–2344.

    CAS  Google Scholar 

  28. Lu, Y. S.; Lu, F. J.; Zhu, M. Y. Nitrogen-modified metal-free carbon materials for acetylene hydrochlorination. J. Taiwan Inst. Chem. Eng. 2020, 113, 198–203.

    CAS  Google Scholar 

  29. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    CAS  Google Scholar 

  30. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  31. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

    Google Scholar 

  32. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    CAS  Google Scholar 

  33. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  34. Ma, R. G.; Lin, G. X.; Ju, Q. J.; Tang, W.; Chen, G.; Chen, Z. H.; Liu, Q.; Yang, M. H.; Lu, Y. F.; Wang, J. C. Edge-sited Fe-N4 atomic species improve oxygen reduction activity via boosting O2 dissociation. Appl. Catal. B: Environ. 2020, 265, 118593.

    CAS  Google Scholar 

  35. Yu, G. F.; Wu, Y. Q.; Cao, H. B.; Ge, Q. F.; Dai, Q.; Sun, S. H.; Xie, Y. B. Insights into the mechanism of ozone activation and singlet oxygen generation on N-doped defective nanocarbons: A DFT and machine learning study. Environ. Sci. Technol. 2022, 56, 7853–7863.

    CAS  Google Scholar 

  36. Ai, Y. J.; Hu, Z. N.; Shao, Z. X.; Qi, L.; Liu, L.; Zhou, J. J.; Sun, H. B.; Liang, Q. L. Egg-like magnetically immobilized nanospheres: A long-lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor. Nano Res. 2018, 11, 287–299.

    CAS  Google Scholar 

  37. Chernykh, A.; Liu, J. P.; Ishida, H. Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain. Polymer 2006, 47, 7664–7669.

    CAS  Google Scholar 

  38. Zhao, J. M.; Niu, W. X.; Zhang, L.; Cai, H. R.; Han, M. Y.; Yuan, Y. L.; Majeed, S.; Anjum, S.; Xu, G. B. A template-free and surfactant-free method for high-yield synthesis of highly monodisperse 3-aminophenol-formaldehyde resin and carbon nano/microspheres. Macromolecules 2013, 46, 140–145.

    CAS  Google Scholar 

  39. Zhao, J. M.; Gilani, M. R. H. S.; Lai, J. P.; Nsabimana, A.; Liu, Z. Y.; Luque, R.; Xu, G. B. Autocatalysis synthesis of poly (benzoxazine-co-resol)-based polymer and carbon spheres. Macromolecules 2018, 51, 5494–5500.

    CAS  Google Scholar 

  40. Allen, D. J.; Ishida, H. Polymerization of linear aliphatic diamine-based benzoxazine resins under inert and oxidative environments. Polymer 2007, 48, 6763–6772.

    CAS  Google Scholar 

  41. Feng, G. D.; Cheng, P.; Yan, W. F.; Boronat, M.; Li, X.; Su, J. H.; Wang, J. Y.; Li, Y.; Corma, A.; Xu, R. R. et al. Accelerated crystallization of zeolites via hydroxyl free radicals. Science 2016, 351, 1188–1191.

    CAS  Google Scholar 

  42. Feng, G. D.; Wang, J. Y.; Boronat, M.; Li, Y.; Su, J. H.; Huang, J.; Ma, Y. H.; Yu, J. H. Radical-facilitated green synthesis of highly ordered mesoporous silica materials. J. Am. Chem. Soc. 2018, 140, 4770–4773.

    CAS  Google Scholar 

  43. Suslick, K. S.; Price, G. J. Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 1999, 29, 295–326.

    CAS  Google Scholar 

  44. Pol, V. G.; Shrestha, L. K.; Ariga, K. Tunable, functional carbon spheres derived from rapid synthesis of resorcinol-formaldehyde resins. ACS Appl. Mater. Interfaces 2014, 6, 10649–10655.

    CAS  Google Scholar 

  45. Liu, J.; Qiao, S. Z.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D. Y.; Lu, G. Q. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew. Chem. 2011, 123, 6069–6073.

    Google Scholar 

  46. Friedel, B.; Greulich-Weber, S. Preparation of monodisperse, submicrometer carbon spheres by pyrolysis of melamine-formaldehyde resin. Small 2006, 2, 859–863.

    CAS  Google Scholar 

  47. Huang, G.; Xiao, Z. H.; Chen, R.; Wang, S. Y. Defect engineering of cobalt-based materials for electrocatalytic water splitting. ACS Sustainable Chem. Eng. 2018, 6, 15954–15969.

    CAS  Google Scholar 

  48. Zhao, C. Y.; Yi, Z. H. M.; Xue, Y. N.; Guan, Q. X.; Li, W. Constructing the single-site of pyridine-based organic compounds for acetylene hydrochlorination: From theory to experiment. Appl. Organomet. Chem. 2021, 35, e6318.

    CAS  Google Scholar 

  49. Qiu, Y. Y.; Ali, S.; Lan, G. J.; Tong, H. Q.; Fan, J. T.; Liu, H. Y.; Li, B.; Han, W. F.; Tang, H. D.; Liu, H. Z. et al. Defect-rich activated carbons as active and stable metal-free catalyst for acetylene hydrochlorination. Carbon 2019, 146, 406–412.

    CAS  Google Scholar 

  50. Yang, Y.; Lan, G. J.; Wang, X. L.; Li, Y. Direct synthesis of nitrogen-doped mesoporous carbons for acetylene hydrochlorination. Chin. J. Catal. 2016, 37, 1242–1248.

    CAS  Google Scholar 

  51. Wang, J.; Gong, W. Q.; Zhu, M. Y.; Dai, B. Effect of carbon defects on the nitrogen-doped carbon catalytic performance for acetylene hydrochlorination. Appl. Catal., A. 2018, 564, 72–78.

    CAS  Google Scholar 

  52. Li, X. Y.; Zhang, J. L.; Li, W. MOF-derived nitrogen-doped porous carbon as metal-free catalysts for acetylene hydrochlorination. J. Ind Eng. Chem. 2016, 44, 146–154.

    Google Scholar 

  53. Kaiser, S. K.; Fako, E.; Surin, I.; Krumeich, F.; Kondratenko, V. A.; Kondratenko, E. V.; Clark, A. H.; López, N.; Pérez-Ramírez, J. Performance descriptors of nanostructured metal catalysts for acetylene hydrochlorination. Nat. Nanotechnol. 2022, 17, 606–612.

    CAS  Google Scholar 

  54. Li, Y. W.; Wang, F. M.; Hu, J. Q.; Sun, M. S.; Wang, J. W.; Zhang, X. B. A study on the rules of ligands in highly efficient Ruamide/AC catalysts for acetylene hydrochlorination. Catal. Sci. Technol. 2021, 11, 7347–7358.

    CAS  Google Scholar 

  55. Wang, B.; Zhang, T. T.; Liu, Y. W.; Li, W.; Zhang, H. Y.; Zhang, J. L. Phosphine-oxide organic ligand improved Cu-based catalyst for acetylene hydrochlorination. Appl. Catal. A: Gen. 2022, 630, 118461.

    CAS  Google Scholar 

  56. Dai, Y. Y.; Xu, X. L.; Zhu, R. B.; Xie, R. Y.; Zhao, C. S.; Yan, Y. Z.; Niu, Q. The effect of alkali metals on the Ru/AC catalyst for acetylene hydrochlorination. Catal. Commun. 2021, 158, 106334.

    CAS  Google Scholar 

  57. Tao, X.; Chen, F. Y.; Xie, Y. G.; Cheng, X. J.; Liu, X. L.; Gao, G. Microporous nitrogen-doped carbon from polyaniline as a highly efficient and stable catalyst for acetylene hydrochlorination. J. Taiwan Inst. Chem. Eng. 2021, 126, 80–87.

    CAS  Google Scholar 

  58. Li, J.; Zhang, H. Y.; Liang, H. X.; Li, L. F.; Zhang, J. L. High-efficiency catalysis of Ru-based catalysts assisted by triazine-based ligands containing different heteroatoms (N, O, S) for acetylene hydrochlorination. Mol. Catal. 2022, 519, 112142.

    CAS  Google Scholar 

  59. Jin, X.; Hao, Y. L.; Liu, C. X.; Feng, H. B.; Li, X. Y.; Zhu, Y.; Zhou, Y. X.; Song, Y. J.; Hu, J. P. Waste cigarette butt-derived nitrogen-doped porous carbon as a non-mercury catalyst for acetylene hydrochlorination. New J. Chem. 2021, 45, 19358–19363.

    CAS  Google Scholar 

  60. Zhang, M.; Wang, L.; Yan, H. J.; Lian, L. Z.; Si, J. X.; Long, Z. Q.; Cui, X. X.; Wang, J. D.; Zhao, L.; Yang, C. et al. Palladium-halloysite nanocomposites as an efficient heterogeneous catalyst for acetylene hydrochlorination. J. Mater. Res. Technol. 2021, 13, 2055–2065.

    CAS  Google Scholar 

  61. Long, Z. Q.; Wang, L.; Yan, H. J.; Si, J. X.; Zhang, M.; Wang, J. D.; Zhao, L.; Yang, C.; Wu, R. L. Design of choline chloride modified USY zeolites for palladium-catalyzed acetylene hydrochlorination. RSC Adv. 2022, 12, 9923–9932.

    CAS  Google Scholar 

  62. Liu, L.; Song, L. T.; Xu, D.; Zhu, M. Y.; Dai, B. Effect of the transforming Ag into an active species (silver chloride) for the acetylene hydrochlorination. ChemCatChem 2021, 13, 4411–4418.

    CAS  Google Scholar 

  63. Fan, Y. R.; Xu, H. M.; Liu, Z. S.; Sun, S. Y.; Huang, W. J.; Qu, Z.; Yan, N. Q. Tunable redox cycle and enhanced π-complexation in acetylene hydrochlorination over RuCu Catalysts. ACS Catal. 2022, 12, 7579–7588.

    CAS  Google Scholar 

  64. Kuang, M.; Guan, A. X.; Gu, Z. X.; Han, P.; Qian, L. P.; Zheng, G. F. Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion. Nano Res. 2019, 12, 2324–2329.

    CAS  Google Scholar 

  65. Li, F.; Zhang, H. Y.; Zhang, M. M.; Peng, W. C.; Yao, L. S.; Dong, Y. Z.; Zhang, J. L. Construction of multistage porous carbon materials for the hydrochlorination of acetylene: Impact of nitrogen incorporation. Mol. Catal. 2022, 527, 112405.

    CAS  Google Scholar 

  66. Ma, H. F.; Ma, G. Y.; Qi, Y. Y.; Wang, Y. L.; Chen, Q. J.; Rout, K. R.; Fuglerud, T.; Chen, D. Nitrogen-doped carbon-assisted one-pot tandem reaction for vinyl chloride production via ethylene oxychlorination. Angew. Chem. 2020, 132, 22264–22269.

    Google Scholar 

  67. Wang, B. L.; Jiang, Z.; Wang, T.; Tang, Q.; Yu, M. D.; Feng, T.; Tian, M.; Chang, R. Q.; Yue, Y. X.; Pan, Z. Y. et al. Controllable synthesis of vacancy-defect Cu site and its catalysis for the manufacture of vinyl chloride monomer. ACS Catal. 2021, 11, 11016–11028.

    CAS  Google Scholar 

  68. Liu, X. Y.; Qiao, X. L.; Zhou, Z. Q.; Zhao, C. Y.; Guan, Q. X.; Li, W. Mechanism exploring of acetylene hydrochlorination using hexamethylenetetramine as a single active site metal-free catalyst. Catal. Commun. 2020, 147, 106147.

    CAS  Google Scholar 

  69. Ewels, C. P.; Glerup, M. Nitrogen doping in carbon nanotubes. J. Nanosci. Nanotechnol. 2005, 5, 1345–1363.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21978325), Innovation Research Projects (Nos. 20CX06072A, 20CX06095A, and 20CX06096A), the Natural Science Foundation of Shandong Province (Nos. ZR2020KB006 and ZR2020YQ17), and the Science and Technology Project of Xinjiang Bingtuan Supported by Central Government (No. 2022BC001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Feng or De Chen.

Electronic Supplementary Material

12274_2022_5237_MOESM1_ESM.pdf

Free radicals induced ultra-rapid synthesis of N-doped carbon sphere catalyst with boosted pyrrolic N active sites for efficient acetylene hydrochlorination

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Zheng, X., Cao, J. et al. Free radicals induced ultra-rapid synthesis of N-doped carbon sphere catalyst with boosted pyrrolic N active sites for efficient acetylene hydrochlorination. Nano Res. 16, 6178–6186 (2023). https://doi.org/10.1007/s12274-022-5237-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5237-y

Keywords

Navigation