Skip to main content

Advertisement

Log in

Deep tumor-penetrating nano-delivery strategy to improve diagnosis and therapy in patient-derived xenograft (PDX) oral cancer model and patient tissue

  • Research Article
  • Published:
Nano Research Aims and scope

Abstract

Nanoprodrugs that are directly assembled by prodrugs attract considerable attention with high anticancer potentials. However, their stability and efficiency of tumor-targeted delivery remain a major challenge in practical biomedical applications. Here, we report a new deep tumor-penetrating nano-delivery strategy to achieve enhanced anti-cancer performance by systematic optimization of a porphyrin-doxorubicin-based nanoprodrug using various PEGylations/crosslinks and co-administration of targeting peptide iRGD. Polyethylene glycols (PEGs) with different molecular weights and grafts are employed to crosslink the nanoprodrug and optimize size, charge, tumor accumulation and penetration, and anti-cancer efficiency, etc. The tumor penetration was validated in syngeneic oral cancer mouse models, patient-derived xenograft (PDX) models, and oral cancer tissue from patients. The optimized nanoprodrug co-administrated with iRGD remarkably enhances the accumulation and penetration both in tumor vascular and PDX tumor tissue. It is effective and safe to improve in vivo therapeutic efficacy via the passive tumor targeting dependent and independent mode. Our tumor-penetrating nano-delivery strategy is promising to strengthen the nanoprodrugs in clinical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hogan, G.; Tangney, M. The who, what, and why of drug discovery and development. Trends Pharmacol. Sci. 2018, 39, 848–852.

    Article  CAS  Google Scholar 

  2. Holohan, C.; Van Schaeybroeck, S.; Longley, D. B.; Johnston, P. G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714–726.

    Article  CAS  Google Scholar 

  3. Jana, D.; Zhao, Y. L. Strategies for enhancing cancer chemodynamic therapy performance. Exploration 2022, 2, 20210238.

    Article  Google Scholar 

  4. Yuan, Y.; Bo, R.; Jing, D.; Ma, Z.; Wang, Z. L.; Lin, T. Y.; Dong, L. J.; Xue, X. D.; Li, Y. P. Excipient-free porphyrin/SN-38 based nanotheranostics for drug delivery and cell imaging. Nano Res. 2020, 13, 503–510.

    Article  CAS  Google Scholar 

  5. Xue, X. D.; Huang, Y.; Wang, X. S.; Wang, Z. L.; Carney, R. P.; Li, X. C.; Yuan, Y.; He, Y. X.; Lin, T. Y.; Li, Y. P. Self-indicating, fully active pharmaceutical ingredients nanoparticles (FAPIN) for multimodal imaging guided trimodality cancer therapy. Biomaterials 2018, 161, 203–215.

    Article  CAS  Google Scholar 

  6. Xue, X. D.; Jin, S. B.; Zhang, C. Q.; Yang, K. N.; Huo, S. D.; Chen, F.; Zou, G. Z.; Liang, X. J. Probe-inspired nano-prodrug with dual-color fluorogenic property reveals spatiotemporal drug release in living cells. ACS Nano 2015, 9, 2729–2739.

    Article  CAS  Google Scholar 

  7. Buckton, G.; Beezer, A. E. The relationship between particle size and solubility. Int. J. Pharm. 1992, 82, R7–R10.

    Article  Google Scholar 

  8. Jinno, J. I.; Kamada, N.; Miyake, M.; Yamada, K.; Mukai, T.; Odomi, M.; Toguchi, H.; Liversidge, G. G.; Higaki, K.; Kimura, T. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J. Control. Release 2006, 111, 56–64.

    Article  CAS  Google Scholar 

  9. Juenemann, D.; Jantratid, E.; Wagner, C.; Reppas, C.; Vertzoni, M.; Dressman, J. B. Biorelevant in vitro dissolution testing of products containing micronized or nanosized fenofibrate with a view to predicting plasma profiles. Eur. J. Pharm. Biopharm. 2011, 77, 257–264.

    Article  CAS  Google Scholar 

  10. Junghanns, J. U. A. H.; Müller, R. H. Nanocrystal technology, drug delivery, and clinical applications. Int. J. Nanomedicine 2008, 3, 295–309.

    CAS  Google Scholar 

  11. Liversidge, G. G.; Conzentino, P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int. J. Pharm. 1995, 125, 309–313.

    Article  CAS  Google Scholar 

  12. Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79.

    Article  CAS  Google Scholar 

  13. Prabhakar, U.; Maeda, H.; Jain, R. K.; Sevick-Muraca, E. M.; Zamboni, W.; Farokhzad, O. C.; Barry, S. T.; Gabizon, A.; Grodzinski, P.; Blakey, D. C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013, 73, 2412–2417.

    Article  CAS  Google Scholar 

  14. Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 2011, 63, 131–135.

    Article  CAS  Google Scholar 

  15. Jain, R. K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664.

    Article  CAS  Google Scholar 

  16. Lammers, T.; Kiessling, F.; Hennink, W. E.; Storm, G. Drug targeting to tumors: Principles, pitfalls, and (pre-) clinical progress. J. Control. Release 2012, 161, 175–187.

    Article  CAS  Google Scholar 

  17. Sindhwani, S.; Syed, A. M.; Ngai, J.; Kingston, B. R.; Maiorino, L.; Rothschild, J.; MacMillan, P.; Zhang, Y. W.; Rajesh, N. U.; Hoang, T. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020, 19, 566–575.

    Article  CAS  Google Scholar 

  18. Agarwal, R.; Singh, V.; Jurney, P.; Shi, L.; Sreenivasan, S. V.; Roy, K. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc. Natl. Acad. Sci. USA 2013, 110, 17247–17252.

    Article  CAS  Google Scholar 

  19. Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

    Article  CAS  Google Scholar 

  20. Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 7, 203–212.

    Article  CAS  Google Scholar 

  21. Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.

    Article  CAS  Google Scholar 

  22. Adams, M. L.; Lavasanifar, A.; Kwon, G. S. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 2003, 92, 1343–1355.

    Article  CAS  Google Scholar 

  23. Harris, J. M.; Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221.

    Article  CAS  Google Scholar 

  24. Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R. H. ‘Seaalth’ orona—oree nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids. Surf. B: Biointerfaces 2000, 18, 301–313.

    Article  CAS  Google Scholar 

  25. Miteva, M.; Kirkbride, K. C.; Kilchrist, K. V.; Werfel, T. A.; Li, H. M.; Nelson, C. E.; Gupta, M. K.; Giorgio, T. D.; Duvall, C. L. Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers. Biomaterials 2015, 38, 97–107.

    Article  CAS  Google Scholar 

  26. Mori, A.; Klibanov, A. L.; Torchilin, V. P.; Huang, L. Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett. 1991, 284, 263–266.

    Article  CAS  Google Scholar 

  27. Byrne, J. D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008, 60, 1615–1626.

    Article  CAS  Google Scholar 

  28. Chariou, P. L.; Ortega-Rivera, O. A.; Steinmetz, N. F. Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredients. ACS Nano 2020, 14, 2678–2701.

    Article  CAS  Google Scholar 

  29. Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148, 135–146.

    Article  CAS  Google Scholar 

  30. Guan, J. B.; Guo, H.; Tang, T.; Wang, Y. H.; Wei, Y. S.; Seth, P.; Li, Y. M.; Dehm, S. M.; Ruoslahti, E.; Pang, H. B. iRGD-liposomes enhance tumor delivery and therapeutic efficacy of antisense oligonucleotide drugs against primary prostate cancer and bone metastasis. Adv. Funct. Mater. 2021, 31, 2100478.

    Article  CAS  Google Scholar 

  31. Ruoslahti, E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater. 2012, 24, 3747–3756.

    Article  CAS  Google Scholar 

  32. Liu, X. S.; Lin, P.; Perrett, I.; Lin, J.; Liao, Y. P.; Chang, C. H.; Jiang, J. H.; Wu, N. P.; Donahue, T.; Wainberg, Z. et al. Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer. J. Clin. Invest. 2017, 127, 2007–2018.

    Article  Google Scholar 

  33. Yu, H.; Tang, Z.; Song, W.; Zhang, D.; Zhang, Y.; Chen, X. Co-administration of iRGD enhancing the anticancer efficacy of cisplatin-loaded polypeptide nanoparticles. J. Control. Release 2015, 213, e145–e146.

    Article  Google Scholar 

  34. Sugahara, K. N.; Teesalu, T.; Karmali, P. P.; Kotamraju, V. R.; Agemy, L.; Girard, O. M.; Hanahan, D.; Mattrey, R. F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 2009, 16, 510–520.

    Article  CAS  Google Scholar 

  35. Hanahan, D.; Weinberg, R. A. The hallmarks of cancer. Cell 2000, 100, 57–70.

    Article  CAS  Google Scholar 

  36. Ruoslahti, E.; Pierschbacher, M. D. New perspectives in cell adhesion: RGD and integrins. Science 1987, 238, 491–497.

    Article  CAS  Google Scholar 

  37. Sugahara, K. N.; Teesalu, T.; Karmali, P. P.; Kotamraju, V. R.; Agemy, L.; Greenwald, D. R.; Ruoslahti, E. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 2010, 328, 1031–1035.

    Article  CAS  Google Scholar 

  38. Teesalu, T.; Sugahara, K. N.; Kotamraju, V. R.; Ruoslahti, E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. USA 2009, 106, 16157–16162.

    Article  CAS  Google Scholar 

  39. Wang, Y. Z.; Xie, Y.; Li, J.; Peng, Z.-H.; Sheinin, Y.; Zhou, J. P.; Oupický, D. Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy. ACS Nano 2017, 11, 2227–2238.

    Article  CAS  Google Scholar 

  40. Liu, X. S.; Chen, Y. J.; Li, H.; Huang, N.; Jin, Q.; Ren, K. F.; Ji, J. Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. ACS Nano 2013, 7, 6244–6257.

    Article  CAS  Google Scholar 

  41. Liu, X. S.; Zhu, H. G.; Jin, Q.; Zhou, W. B.; Colvin, V. L.; Ji, J. Small and stable phosphorylcholine zwitterionic quantum dots for weak nonspecific phagocytosis and effective Tat peptide functionalization. Adv. Healthc. Mater. 2013, 2, 352–360.

    Article  CAS  Google Scholar 

  42. Xue, X. D.; Huang, Y.; Bo, R. N.; Jia, B.; Wu, H.; Yuan, Y.; Wang, Z. L.; Ma, Z.; Jing, D.; Xu, X. B. et al. Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nat. Commun. 2018, 9, 3653.

    Article  Google Scholar 

  43. Yu, W. M.; Xue, X. D.; Ma, A. H.; Ruan, Y.; Zhang, H. Y.; Cheng, F.; Li, Y. P.; Pan, C. X.; Lin, T. Y. Self-assembled nanoparticle-mediated chemophototherapy reverses the drug resistance of bladder cancers through dual AKT/ERK inhibition. Adv. Ther. 2020, 3, 2000032.

    Article  CAS  Google Scholar 

  44. Wang, Z.; Qiao, R.; Tang, N.; Lu, Z.; Wang, H.; Zhang, Z. X.; Xue, X. D.; Huang, Z. Y.; Zhang, S. R.; Zhang, G. X.; et al. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. Biomaterials 2017, 127, 25–35.

    Article  CAS  Google Scholar 

  45. Chen, W.; Zhang, J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J. Nanosci. Nanotechnol. 2006, 6, 1159–1166.

    Article  CAS  Google Scholar 

  46. Miura, M.; Gabel, D.; Oenbrink, G.; Fairchild, R. G. Preparation of carboranyl porphyrins for boron neutron capture therapy. Tetrahedron Lett. 1990, 31, 2247–2250.

    Article  CAS  Google Scholar 

  47. Zhang, X. A.; Lovejoy, K. S.; Jasanoff, A.; Lippard, S. J. Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing. Proc. Natl. Acad. Sci. USA 2007, 104, 10780–10785.

    Article  CAS  Google Scholar 

  48. Barenholz, Y. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134.

    Article  CAS  Google Scholar 

  49. Lovell, J. F.; Chan, M. W.; Qi, Q. C.; Chen, J.; Zheng, G. Porphyrin FRET acceptors for apoptosis induction and monitoring. J. Am. Chem. Soc. 2011, 133, 18580–18582.

    Article  CAS  Google Scholar 

  50. Rieffel, J.; Chen, F.; Kim, J.; Chen, G. Y.; Shao, W.; Shao, S.; Chitgupi, U.; Hernandez, R.; Graves, S. A.; Nickles, R. J. et al. Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv. Mater. 2015, 27, 1785–1790.

    Article  CAS  Google Scholar 

  51. Taruttis, A.; Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 2015, 9, 219–227.

    Article  CAS  Google Scholar 

  52. Wang, L. V.; Yao, J. J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 2016, 13, 627–638.

    Article  CAS  Google Scholar 

  53. Hare, J. I.; Lammers, T.; Ashford, M. B.; Puri, S.; Storm, G.; Barry, S. T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev. 2017, 108, 25–38.

    Article  CAS  Google Scholar 

  54. Nunes, M.; Vrignaud, P.; Vacher, S.; Richon, S.; Lièvre, A.; Cacheux, W.; Weiswald, L. B.; Massonnet, G.; Chateau-Joubert, S.; Nicolas, A. et al. Evaluating patient-derived colorectal cancer xenografts as preclinical models by comparison with patient clinical data. Cancer Res. 2015, 75, 1560–1566.

    Article  CAS  Google Scholar 

  55. Tentler, J. J.; Tan, A. C.; Weekes, C. D.; Jimeno, A.; Leong, S.; Pitts, T. M.; Arcaroli, J. J.; Messersmith, W. A.; Eckhardt, S. G. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 2012, 9, 338–350.

    Article  CAS  Google Scholar 

  56. Zhu, Z.; Ma, A.-H.; Zhang, H. Y.; Lin, T.-Y.; Xue, X. D.; Farrukh, H.; Zhu, S. M.; Shi, W.; Yuan, R.; Cao, Z. X.; et al. Phototherapy with cancer-specific nanoporphyrin potentiates immunotherapy in bladder cancer. Clin. Cancer Res. 2022, 8, 4820–4831.

    Article  Google Scholar 

  57. de Mendoza, T. H.; Mose, E. S.; Botta, G. P.; Braun, G. B.; Kotamraju, V. R.; French, R. P.; Suzuki, K.; Miyamura, N.; Teesalu, T.; Ruoslahti, E. et al. Tumor-penetrating therapy for β5 integrin-rich pancreas cancer. Nat. Commun. 2021, 12, 1541.

    Article  Google Scholar 

  58. Willis, M. S.; Parry, T. L.; Brown, D. I.; Mota, R. I.; Huang, W.; Beak, J. Y.; Sola, M.; Zhou, C.; Hicks, S. T.; Caughey, M. C. et al. Doxorubicin exposure causes subacute cardiac atrophy dependent on the striated muscle-specific ubiquitin ligase MuRF1. Circ. Heart Fail. 2019, 12, e005234.

    Article  CAS  Google Scholar 

  59. Zhang, S.; Liu, X. B.; Bawa-Khalfe, T.; Lu, L. S.; Lyu, Y. L.; Liu, L. F.; Yeh, E. T. H. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 2012, 18, 1639–1642.

    Article  Google Scholar 

  60. Park, K. The beginning of the end of the nanomedicine hype. J. Control. Release 2019, 305, 221–222.

    Article  CAS  Google Scholar 

  61. Shi, Y.; van der Meel, R.; Chen, X. Y.; Lammers, T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 2020, 10, 7921–7924.

    Article  Google Scholar 

  62. Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial of this work was supported by National Institutes of Health/National Cancer Institute (Nos. R01CA199668 and R01CA232845), National Institutes of Health/National Institute of Dental and Craniofacial Research (No. 1R01DE029237), National Institutes of Health/ National Institute of Biomedical Imaging and Bioengineering (No. 9R01EB033677-06A1), UC Davis Comprehensive Cancer Center Support Grant (CCSG) awarded by the National Cancer Institute (No. NCI P30CA093373).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yikai Zhou, Bai Xiang, Xiangdong Xue or Yuanpei Li.

Electronic supplementary material

12274_2022_5047_MOESM1_ESM.pdf

Deep tumor-penetrating nano-delivery strategy to improve diagnosis and therapy in patient-derived xenograft (PDX) oral cancer model and patient tissue

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Lindstrom, A.R., Birkeland, A.C. et al. Deep tumor-penetrating nano-delivery strategy to improve diagnosis and therapy in patient-derived xenograft (PDX) oral cancer model and patient tissue. Nano Res. 16, 2927–2937 (2023). https://doi.org/10.1007/s12274-022-5047-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5047-2

Keywords