Skip to main content
Log in

Tunable bismuth doping/loading endows NaTaO3 nanosheet highly selective photothermal reduction of CO2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photothermal CO2 reduction with H2O, integrating advantages of photocatalysis driven H2O splitting and thermal catalysis promoted CO2 reduction, has drawn sharply increasing attention in artificial synthesis of solar fuels. The photothermal effect of metal nanoparticles facilities CO2 hydrogenation and activation of lattice oxygen in oxide photocatalyst promotes H2O oxidation, which is essentially considered for highly efficient photothermal catalysis. However, the large thermal conductivity of most metal nanoparticles induces inevitable heat dissipation, restricting the increase of catalyst temperature. In this work, to minimize the heat dissipation, we employ bismuth nanoparticles as photothermal unit, which is of the lowest thermal conductivity in the metal family. Meanwhile, we adopt bismuth doped NaTaO3 as photocatalytic unit because of the bismuth doping induced activation of lattice oxygen. The bismuth nanoparticles are assembled with bismuth doped NaTaO3 through one-step tunable transformation from Bi4TaO8Cl. Benefiting from the photothermal effect, thermal insulation caused by bismuth metal, and lattice oxygen activation by bismuth doping, the NaTaO3:Bi hybrid exhibits high photothermal catalytic performance. The yield of CO over NaTaO3:Bi hybrid at 413 K via photothermal catalysis is 141 times higher than that room temperature photocatalysis. Further, ultraviolet (UV) light irradiation leads to 89.2% selectivity of CO and visible light irradiation leads to 97.5% selectivity of CH4. This work may broaden the photocatalytic application of ABO3 perovskite and provides a novel strategy for the development of photothermal catalysts for artificial photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Y. F.; Gao, W.; Li, S. W.; Williams, G. R.; Mahadi, A. H.; Ma, D. Solar-versus thermal-driven catalysis for energy conversion. Joule 2019, 3, 920–937.

    Article  CAS  Google Scholar 

  2. Li, R. Z.; Li, Y.; Li, Z. H.; Wei, W. Q.; Hao, Q. G.; Shi, Y. Q.; Ouyang, S. X.; Yuan, H.; Zhang, T. R. Electronically activated Fe5C2 via N-doped carbon to enhance photothermal syngas conversion to light olefins. ACS Catal. 2022, 12, 5316–5326.

    Article  CAS  Google Scholar 

  3. Song, H.; Ye, J. H. Photothermal tandem catalysis for CO2 hydrogenation to methanol. Chem 2022, 8, 1181–1183.

    Article  CAS  Google Scholar 

  4. Chen, Y.; Zhang, Y. M.; Fan, G. Z.; Song, L. Z.; Jia, G.; Huang, H. T.; Ouyang, S. X.; Ye, J. H.; Li, Z. S.; Zou, Z. G. Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity. Joule 2021, 5, 3235–3251.

    Article  CAS  Google Scholar 

  5. Li, Z. H.; Liu, J. J.; Shi, R.; Waterhouse, G. I. N.; Wen, X. D.; Zhang, T. R. Fe-based catalysts for the direct photohydrogenation of CO2 to value-added hydrocarbons. Adv. Energy Mater. 2022, 12, 2200475.

    Article  CAS  Google Scholar 

  6. Huang, H. N.; Shi, R.; Zhang, X. R.; Zhao, J. Q.; Su, C. L.; Zhang, T. R. Photothermal-assisted triphase photocatalysis over a multifunctional bilayer paper. Angew. Chem., Int. Ed. 2021, 60, 22963–22969.

    Article  CAS  Google Scholar 

  7. Lou, D. Y.; Zhu, Z. J.; Xu, Y. F.; Li, C. R.; Feng, K.; Zhang, D. K.; Lv, K. X.; Wu, Z. Y.; Zhang, C. C.; Ozin, G. A. et al. A core-shell catalyst design boosts the performance of photothermal reverse water gas shift catalysis. Sci. China Mater. 2021, 64, 2212–2220.

    Article  CAS  Google Scholar 

  8. Wu, Z. Y.; Li, C. R.; Li, Z.; Feng, K.; Cai, M. J.; Zhang, D. K.; Wang, S. H.; Chu, M. Y.; Zhang, C. C.; Shen, J. H. et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis. ACS Nano 2021, 15, 5696–5705.

    Article  CAS  Google Scholar 

  9. Wu, J.; Liu, J.; Xia, W.; Ren, Y. Y.; Wang, F. Advances on photocatalytic CO2 reduction based on CdS and CdSe nano-semiconductors. Acta Phys. Sin. 2021, 37, 2008043.

    Google Scholar 

  10. Zhang, Z. K.; Gao, Z. H.; Liu, H. Y.; Abanades, S.; Lu, H. F. High photothermally active Fe2O3 film for CO2 photoreduction with H2O driven by solar light. ACS Appl. Energy Mater. 2019, 2, 8376–8380.

    Article  CAS  Google Scholar 

  11. Ha, M. N.; Lu, G. Z.; Liu, Z. F.; Wang, L. C.; Zhao, Z. 3DOM-LaSrCoFeO6—8 as a highly active catalyst for the thermal and photothermal reduction of CO2 with H2O to CH4. J. Mater. Chem. A 2016, 4, 13155–13165.

    Article  CAS  Google Scholar 

  12. Li, S. M.; Wang, C. H.; Li, D. S.; Xing, Y. M.; Zhang, X. T.; Liu, Y. C. Bi4TaO8Cl/Bi heterojunction enables high-selectivity photothermal catalytic conversion of CO2-H2O flow to liquid alcohol. Chem. Eng. J. 2022, 435, 135133.

    Article  CAS  Google Scholar 

  13. Yu, F.; Wang, C. H.; Li, Y. Y.; Ma, H.; Wang, R.; Liu, Y. C.; Suzuki, N.; Terashima, C.; Ohtani, B.; Ochiai, T. et al. Enhanced solar photothermal catalysis over solution plasma activated TiO2. Adv. Sci. 2020, 7, 2000204.

    Article  CAS  Google Scholar 

  14. Yan, J. Y.; Wang, C. H.; Ma, H.; Li, Y. Y.; Liu, Y. C.; Suzuki, N.; Terashima, C.; Fujishima, A.; Zhang, X. T. Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction. Appl. Catal. B: Environ. 2020, 268, 118401.

    Article  CAS  Google Scholar 

  15. Hu, X. T.; Xie, Z. J.; Tang, Q.; Wang, H.; Zhang, L. B.; Wang, J. Y. Enhanced CH4 yields by interfacial heating-induced hot water steam during photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2021, 298, 120635.

    Article  CAS  Google Scholar 

  16. Yoshino, S.; Takayama, T.; Yamaguchi, Y.; Iwase, A.; Kudo, A. CO2 reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis. Acc. Chem. Res. 2022, 55, 966–977.

    Article  CAS  Google Scholar 

  17. Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Y. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 73, 2313–2322.

    Article  Google Scholar 

  18. Sun, S. C.; Zhang, X. Y.; Liu, X. L.; Pan, L.; Zhang, X. W.; Zou, J. J. Design and construction of cocatalysts for photocatalytic water splitting. Acta Phys. Sin. 2020, 36, 1905007.

    Article  Google Scholar 

  19. Wang, Z. J.; Hong, J. J.; Ng, S. F.; Liu, W.; Huang, J. J.; Chen, P. F.; Ong, W. J. Recent progress of perovskite oxide in emerging photocatalysis landscape: Water splitting, CO2 reduction, and N2 fixation. Acta Phys. Sin. 2021, 37, 2011033.

    Google Scholar 

  20. Pan, J. B.; Shen, S.; Zhou, W.; Tang, J.; Ding, H. Z.; Wang, J. B.; Chen, L.; Au, C. T.; Yin, S. F. Recent progress in photocatalytic hydrogen evolution. Acta Phys. Sin. 2020, 36, 1905068.

    Article  Google Scholar 

  21. Onishi, H. Sodium tantalate photocatalysts doped with metal cations: Why are they active for water splitting? ChemSusChem 2019, 72, 1825–1834.

    Article  Google Scholar 

  22. Mamba, G.; Mafa, P. J.; Muthuraj, V.; Mashayekh-Salehi, A.; Royer, S.; Nkambule, T. I. T.; Rtimi, S. Heterogeneous advanced oxidation processes over stoichiometric ABO3 perovskite nanostructures. Mater. Today Nano 2022, 18, 100184.

    Article  CAS  Google Scholar 

  23. Sudrajat, H.; Kitta, M.; Ichikuni, N.; Onishi, H. Double doping of NaTaO3 photocatalysts with lanthanum and manganese for strongly enhanced visible-light absorption. ACS Appl. Energy Mater. 2019, 2, 7518–7526.

    Article  CAS  Google Scholar 

  24. Liu, X.; Sohlberg, K. The influence of oxygen vacancies and La doping on the surface structure of NaTaO3. Comput. Mater. Sci. 2015, 103, 1–7.

    Article  Google Scholar 

  25. Su, Y. G.; Wang, S. W.; Meng, Y.; Han, H.; Wang, X. J. Dual substitutions of single dopant Cr3+ in perovskite NaTaO3: Synthesis, structure, and photocatalytic performance. RSC Adv. 2012, 2, 12932–12939.

    Article  CAS  Google Scholar 

  26. Yang, H.; Zhang, L. G.; Yu, L. F.; Wang, F.; Ma, Z. Z.; Zhou, J.; Xu, X. H. Simultaneous regulation of photoabsorption and ferromagnetism of NaTaO3 by Fe doping. Curr. Appl. Phys. 2018, 18, 1422–1425.

    Article  Google Scholar 

  27. Ding, Q.; Liu, Y.; Chen, T.; Wang, X. Y.; Feng, Z. C.; Wang, X. L.; Dupuis, M.; Li, C. Unravelling the water oxidation mechanism on NaTaO3-based photocatalysts. J. Mater. Chem. A 2020, 8, 6812–6821.

    Article  CAS  Google Scholar 

  28. Zhang, Z. K.; Wang, Y.; Cui, G. K.; Lu, H. F.; Abanades, S. Remarkable CO2 photoreduction activity using TiO2 nanotube arrays under favorable photothermal conditions driven by concentrated solar light. Appl. Phys. Lett. 2021, 119, 123906.

    Article  CAS  Google Scholar 

  29. Cai, M. J.; Wu, Z. Y.; Li, Z.; Wang, L.; Sun, W.; Tountas, A. A.; Li, C. R.; Wang, S. H.; Feng, K.; Xu, A. B. et al. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat. Energy 2021, 6, 807–814.

    Article  CAS  Google Scholar 

  30. Zhang, Z. S.; Mao, C. L.; Meira, D. M.; Duchesne, P. N.; Tountas, A. A.; Li, Z.; Qiu, C. Y.; Tang, S. L.; Song, R.; Ding, X. et al. New black indium oxide-tandem photothermal CO2-H2 methanol selective catalyst. Nat. Commun. 2022, 73, 1512.

    Article  Google Scholar 

  31. Qin, Z. Z.; Wu, J.; Li, B.; Su, T. M.; Ji, H. B. Ultrathin layered catalyst for photocatalytic reduction of CO2. Acta Phys. Sin. 2021, 37, 2005027.

    Google Scholar 

  32. Li, Q.; Wang, S. C.; Sun, Z. X.; Tang, Q. J.; Liu, Y. Q.; Wang, L. Z.; Wang, H. Q.; Wu, Z. B. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 72, 2749–2759.

    Article  Google Scholar 

  33. Li, Z. H.; Shi, R.; Zhao, J. Q.; Zhang, T. R. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Res. 2021, 74, 4828–4832.

    Article  Google Scholar 

  34. Cai, M. J.; Li, C. R.; He, L. Enhancing photothermal CO2 catalysis by thermal insulating substrates. Rare Met. 2020, 39, 881–886.

    Article  CAS  Google Scholar 

  35. Chen, G. B.; Gao, R.; Zhao, Y. F.; Li, Z. H.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Zhang, M. T.; Shang, L.; Sheng, G. Y. et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. 2018, 30, 1704663.

    Article  Google Scholar 

  36. Li, Y.; Li, R. Z.; Li, Z. H.; Wei, W. Q.; Ouyang, S. X.; Yuan, H.; Zhang, T. R. Effect of support on catalytic performance of photothermal Fischer-Tropsch synthesis to produce lower olefins over Fe5C2-based Catalysts. Chem. Res. Chin. Univ. 2020, 36, 1006–1012.

    Article  Google Scholar 

  37. Xie, Z. H.; Li, Y. Z.; Zhou, Z. Y.; Hu, Q. Q.; Wu, J. C.; Wu, S. W. Significantly enhancing the solar fuel production rate and catalytic durability for photothermocatalytic CO2 reduction by a synergetic effect between Pt and Co doped Al2O3 nanosheets. J. Mater. Chem. A 2022, 10, 7099–7110.

    Article  CAS  Google Scholar 

  38. Tan, X.; Wu, S. W.; Li, Y. Z.; Zhang, Q.; Hu, Q. Q.; Wu, J. C.; Zhang, A.; Zhang, Y. D. Highly efficient photothermocatalytic CO2 reduction in Ni/Mg-doped Al2O3 with high fuel production rate, large light-to-fuel efficiency, and good durability. Energy Environ. Mater. 2022, 5, 582–591.

    Article  CAS  Google Scholar 

  39. Li, Y. G.; Bai, X. H.; Yuan, D. C.; Zhang, F. Y.; Li, B.; San, X. Y.; Liang, B. L.; Wang, S. F.; Luo, J.; Fu, G. S. General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy. Nat. Commun. 2022, 73, 776.

    Article  Google Scholar 

  40. Ho, C. Y.; Powell, R. W.; Liley, P. E. Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1972, 7, 279–121.

    Article  Google Scholar 

  41. Sun, Y. J.; Zhao, Z. W.; Zhang, W. D.; Gao, C. F.; Zhang, Y. X.; Dong, F. Plasmonic Bi metal as cocatalyst and photocatalyst: The case of Bi/(BiO)2CO3 and Bi particles. J. Colloid Interface Sci. 2017, 485, 1–10.

    Article  CAS  Google Scholar 

  42. Chen, P.; Liu, H. J.; Sun, Y. J.; Li, J. Y.; Cui, W.; Wang, L. A.; Zhang, W. D.; Yuan, X. Y.; Wang, Z. M.; Zhang, Y. X. et al. Bi metal prevents the deactivation of oxygen vacancies in Bi2O2CO3 for stable and efficient photocatalytic NO abatement. Appl. Catal. B: Environ. 2020, 264, 118545.

    Article  CAS  Google Scholar 

  43. Li, R. J.; Luan, Q. J.; Dong, C.; Dong, W. J.; Tang, W.; Wang, G.; Lu, Y. F. Light-facilitated structure reconstruction on self-optimized photocatalyst TiO2@BiOCl for selectively efficient conversion of CO2 to CH4. Appl. Catal. B: Environ 2021, 286, 119832.

    Article  CAS  Google Scholar 

  44. Yang, F.; Elnabawy, A. O.; Schimmenti, R.; Song, P.; Wang, J. W.; Peng, Z. Q.; Yao, S.; Deng, R. P.; Song, S. Y.; Lin, Y. et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 2020, 11, 1088.

    Article  CAS  Google Scholar 

  45. Teixeira, N. G.; Dias, A.; Moreira, R. L. Raman scattering study of the high temperature phase transitions of NaTaO3. J. Eur. Ceram. Soc. 2007, 27, 3683–3686.

    Article  CAS  Google Scholar 

  46. Nakamura, I.; Negishi, N.; Kutsuna, S.; Ihara, T.; Sugihara, S.; Takeuchi, E. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J. Mol. Catal. A: Chem. 2000, 161, 205–212.

    Article  CAS  Google Scholar 

  47. Wang, X. J.; Bai, H. L.; Meng, Y.; Zhao, Y. H.; Tang, C. H.; Gao, Y. Synthesis and optical properties of Bi3+ doped NaTaO3 nano-size photocatalysts. J. Nanosci. Nanotechnol. 2010, 10, 1788–1793.

    Article  CAS  Google Scholar 

  48. Zhang, L. L.; Wang, Z. Q.; Hu, C.; Shi, B. Y. Enhanced photocatalytic performance by the synergy of Bi vacancies and Bi0 in Bi0-Bi2-δMoO6. Appl. Catal. B: Environ. 2019, 257, 117785.

    Article  CAS  Google Scholar 

  49. Zhang, L.; Yang, C.; Lv, K. L.; Lu, Y. C.; Li, Q.; Wu, X. F.; Li, Y. H.; Li, X. F.; Fan, J. J.; Li, M. SPR effect of bismuth enhanced visible photoreactivity of Bi2WO6 for NO abatement. Chin. J. Catal. 2019, 40, 755–764.

    Article  CAS  Google Scholar 

  50. Wu, X. L.; Zhang, Y. L.; Wang, K.; Zhang, S.; Qu, X. F.; Shi, L.; Du, F. L. In-situ construction of Bi/defective Bi4NbO8Cl for nonnoble metal based Mott-Schottky photocatalysts towards organic pollutants removal. J. Hazard. Mater. 2020, 393, 122408.

    Article  CAS  Google Scholar 

  51. Yu, Y.; Cao, C. Y.; Liu, H.; Li, P.; Wei, F. F.; Jiang, Y.; Song, W. G. A Bi/BiOCl heterojunction photocatalyst with enhanced electron-hole separation and excellent visible light photodegrading activity. J. Mater. Chem. A 2014, 2, 1677–1681.

    Article  CAS  Google Scholar 

  52. Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917–1933.

    Article  CAS  Google Scholar 

  53. Qin, D. Y.; Zhou, Y.; Wang, W. J.; Zhang, C.; Zeng, G. M.; Huang, D. L.; Wang, L. L.; Wang, H.; Yang, Y.; Lei, L. et al. Recent advances in two-dimensional nanomaterials for photocatalytic reduction of CO2: Insights into performance, theories, and perspective. J. Mater. Chem. A 2020, 8, 19156–19195.

    Article  CAS  Google Scholar 

  54. Li, X.; Zang, J. L. Facile hydrothermal synthesis of sodium tantalate (NaTaO3) nanocubes and high photocatalytic properties. J. Phys. Chem. C 2009, 113, 19411–19418.

    Article  CAS  Google Scholar 

  55. Dong, F.; Zhao, Z. W.; Sun, Y. J.; Zhang, Y. X.; Yan, S.; Wu, Z. B. An advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification. Environ. Sci. Technol. 2015, 49, 12432–12440.

    Article  CAS  Google Scholar 

  56. Wang, M.; Shen, M.; Jin, X. X.; Tian, J. J.; Shao, Y. R.; Zhang, L. X.; Li, Y. S.; Shi, J. L. Exploring the enhancement effects of hetero-metal doping in CeO2 on CO2 photocatalytic reduction performance. Chem. Eng. J. 2022, 427, 130987.

    Article  CAS  Google Scholar 

  57. Yu, Y. Y.; Dong, X. A.; Chen, P.; Geng, Q.; Wang, H.; Li, J. Y.; Zhou, Y.; Dong, F. Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction. ACS Nano 2021, 15, 14453–14464.

    Article  CAS  Google Scholar 

  58. Zhu, Q.; Cao, Y. N.; Tao, Y.; Li, T.; Zhang, Y.; Shang, H.; Song, J. X.; Li, G. S. CO2 reduction to formic acid via NH2-C@Cu2O photocatalyst in-situ derived from amino modified Cu-MOF. J. CO2 Util. 2021, 54, 101781.

    Article  CAS  Google Scholar 

  59. Xu, F. Y.; Meng, K.; Zhu, B. C.; Liu, H. B.; Xu, J. S.; Yu, J. G. Graphdiyne: A new photocatalytic CO2 reduction cocatalyst. Adv. Funct. Mater. 2019, 29, 1904256.

    Article  CAS  Google Scholar 

  60. Jiang, L. S.; Wang, K.; Wu, X. Y.; Zhang, G. K. Highly enhanced full solar spectrum-driven photocatalytic CO2 reduction performance in Cu2-xS/g-C3N4 composite: Efficient charge transfer and mechanism insight. Sol. RRL 2021, 5, 2000326.

    Article  CAS  Google Scholar 

  61. He, Y. Q.; Rao, H.; Song, K. P.; Li, J. X.; Yu, Y.; Lou, Y.; Li, C. G.; Han, Y.; Shi, Z.; Feng, S. H. 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Adv. Funct. Mater. 2019, 29, 1905153.

    Article  CAS  Google Scholar 

  62. Wang, B.; Wang, X. H.; Lu, L.; Zhou, C. G.; Xi, Z. Y.; Wang, J. J.; Ke, X. K.; Sheng, G. D.; Yan, S. C.; Zou, Z. G. Oxygen-vacancy-activated CO2 splitting over amorphous oxide semiconductor photocatalyst. ACS Catal. 2018, 8, 516–525.

    Article  CAS  Google Scholar 

  63. Wang, Q. L.; Jin, Y. H.; Zhang, Y. F.; Li, Y. X.; Wang, X. X.; Cao, X. Z.; Wang, B. Y. Polyvinyl pyrrolidone-coordinated ultrathin bismuth oxybromide nanosheets for boosting photoreduction of carbon dioxide via ligand-to-metal charge transfer. J. Colloid Interface Sci. 2022, 606, 1087–1100.

    Article  CAS  Google Scholar 

  64. Jin, Y. H.; Li, C. M.; Zhang, Y. F. Preparation and visible-light driven photocatalytic activity of the rGO/TiO2/BiOI heterostructure for methyl orange degradation. New Carbon Mater. 2020, 35, 394–400.

    Article  Google Scholar 

  65. Chen, K.; Jiang, T. T.; Liu, T. H.; Yu, J.; Zhou, S.; Ali, A.; Wang, S. H.; Liu, Y.; Zhu, L. X.; Xu, X. L. Zn dopants synergistic oxygen vacancy boosts ultrathin CoO layer for CO2 photoreduction. Adv. Funct. Mater. 2022, 32, 2109336.

    Article  CAS  Google Scholar 

  66. Cho, L. L.; Huang, K. B. Identification of condom lubricants by FT-IR spectroscopy. Forensic Sci. J. 2012, 11, 33–40.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 91833303, 52273236, and 51872044), the 111 Project (No. B13013), and Jilin Province Science and Technology Development Project (No. 20220201073GX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changhua Wang or Xintong Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Wang, C., Wang, Y. et al. Tunable bismuth doping/loading endows NaTaO3 nanosheet highly selective photothermal reduction of CO2. Nano Res. 16, 2142–2151 (2023). https://doi.org/10.1007/s12274-022-4949-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4949-3

Keywords

Navigation