Skip to main content
Log in

Efficient bifunctional catalysts of CoSe/N-doped carbon nanospheres supported Pt nanoparticles for methanol electrolysis of hydrogen generation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Methanol electrolysis is significant but challenging as an energy-saving technique for electrochemical hydrogen production. Herein, we demonstrated a novel and efficient bifunctional catalyst of CoSe/N-doped carbon nanospheres supported Pt nanoparticles for hydrogen generation via methanol electrolysis; high catalytic performance for both methanol oxidation (MOR) and hydrogen evolution (HER) was observed benefitting from the effective interaction of metal and support effect as well as the oxophilic characteristics of cobalt selenide. Theoretical calculation disclosed the increased charge density of Pt induced by the CoSe/NC support has a bifunctional ability for optimizing the H* adsorption energy for hydrogen evolution reaction and weakening the CO adsorption energy of methanol oxidation reaction. Specifically, the largely improved CO-tolerance ability was observed in the CO-stripping technique, where about 90 mV less of the peak potential for CO oxidation than that of Pt/C catalyst was observed, resulting from a strong electronic effect as indicated by the spectroscopic analysis. The peak current density of 84.2 mA·cm−2 was found for MOR, which was about 3.1 times higher than that of Pt/C; and a low overpotential of 32 mV was required to reach 10 mA·cm−2 for HER in 0.5 mol·L−1 H2SO4 with 1.0 mol·L−1 CH3OH. When serviced as both anode and cathode catalyst in a methanol electrolyzer, a low cell potential of 0.67 V to offer 10 mA cm−2 was obtained, about 170 mV less than that of Pt/C catalyst; moreover, it was 1.1 V lower than that of water-splitting (1.77 V), indicating a promising energy-saving technique for hydrogen generation. They also showed very good catalytic stability and anti-poisoning ability during the catalysis process. This work would help understand the metal-support interaction for hydrogen generation vis methanol electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qin, R.; Hou, J. G.; Xu, C. X.; Yang, H. X.; Zhou, Q. X.; Chen, Z. Z.; Liu, H. Self-supporting Co0.85Se nanosheets anchored on Co plate as highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Nano Res. 2020, 13, 2950–2957.

    Article  CAS  Google Scholar 

  2. Li, D. Y.; Liao, L. L.; Zhou, H. Q.; Zhao, Y.; Cai, F. M.; Zeng, J. S.; Liu, F.; Wu, H.; Tang, D. S.; Yu, F. Highly active non-noble electrocatalyst from Co2P/Ni2P nanohybrids for pH-universal hydrogen evolution reaction. Mater. Today Phys. 2021, 16, 100314.

    Article  CAS  Google Scholar 

  3. Li, P. Y.; Hong, W. T.; Liu, W. Fabrication of large scale self-supported WC/Ni(OH)2 electrode for high-current-density hydrogen evolution. Chin. J. Struc. Chem. 2021, 40, 1365–1371.

    CAS  Google Scholar 

  4. Xue, H. R.; Gong, H.; Yamauchi, Y.; Sasaki, T.; Ma, R. Z. Photo-enhanced rechargeable high-energy-density metal batteries for solar energy conversion and storage. Nano Res. Energy 2022, 1, e9120007.

    Article  Google Scholar 

  5. Chang, J. F.; Wang, G. Z.; Zhang, W.; Yang, Y. Atomically dispersed catalysts for small molecule electrooxidation in direct liquid fuel cells. J. Energy Chem. 2022, 68, 439–453.

    Article  CAS  Google Scholar 

  6. Fu, X. W.; Shi, R. J.; Jiao, S. L.; Li, M. M.; Li, Q. Y. Structural design for electrocatalytic water splitting to realize industrial-scale deployment: Strategies, advances, and perspectives. J. Energy Chem. 2022, 70, 129–153.

    Article  CAS  Google Scholar 

  7. Hasa, B.; Vakros, J.; Katsaounis, A. D. Effect of TiO2 on Pt-Ru-based anodes for methanol electroreforming. Appl. Catal. B:Environ. 2018, 237, 811–816.

    Article  CAS  Google Scholar 

  8. Shen, Y. B.; Xu, Z. W.; Wang, L. Q.; Zhan, Y. L. Hydrogen production from bioinspired methanol reforming at room temperature. Green Chem. 2021, 23, 5618–5624.

    Article  CAS  Google Scholar 

  9. Kwon, S.; Ham, D. J.; Kim, T.; Kwon, Y.; Lee, S. G.; Cho, M. Active methanol oxidation reaction by enhanced CO tolerance on bimetallic Pt/Ir electrocatalysts using electronic and bifunctional effects. ACS Appl. Mater. Interfaces 2018, 10, 39581–39589.

    Article  CAS  Google Scholar 

  10. Hao, A. H.; Wan, X.; Liu, X. F.; Yu, R. H.; Shui, J. L. Inorganic microporous membranes for hydrogen separation: Challenges and solutions. Nano Res. Energy, in press, doi: https://doi.org/10.26599/NRE.2022.9120013.

  11. Yin, X.; Feng, L. G.; Yang, W.; Zhang, Y. X.; Wu, H. Y.; Yang, L.; Zhou, L.; Gan, L.; Sun, S. R. Interface engineering of plasmonic induced Fe/N/C-F catalyst with enhanced oxygen catalysis performance for fuel cells application. Nano Res. 2022, 15, 2138–2146.

    Article  CAS  Google Scholar 

  12. Li, M.; Deng, X. H.; Liang, Y.; Xiang, K.; Wu, D.; Zhao, B.; Yang, H. P.; Luo, J. L.; Fu, X. Z. CoxP@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption. J. Energy Chem. 2020, 50, 314–323.

    Article  CAS  Google Scholar 

  13. Ma, G.; Zhang, X. Y.; Zhou, G. F.; Wang, X. Hydrogen production from methanol reforming electrolysis at NiO nanosheets supported Pt nanoparticles. Chem. Eng. J. 2021, 411, 128292.

    Article  CAS  Google Scholar 

  14. Li, J. X.; Wang, S. L.; Chang, J. F.; Feng, L. G. A review of Ni based powder catalyst for urea oxidation in assisting water splitting reaction. Adv. Powder Mater. 2022, 1, 100030.

    Article  Google Scholar 

  15. Kuang, Z. C.; Liu, S.; Li, X. N.; Wang, M.; Ren, X. Y.; Ding, J.; Ge, R. L.; Zhou, W. H.; Rykov, A. I.; Sougrati, M. T. et al. Topotactically constructed nickel-iron (oxy)hydroxide with abundant in-situ produced high-valent iron species for efficient water oxidation. J. Energy Chem. 2021, 57, 212–218.

    Article  CAS  Google Scholar 

  16. Xiang, K.; Song, Z. X.; Wu, D.; Deng, X. H.; Wang, X. W.; You, W.; Peng, Z. K.; Wang, L.; Luo, J. L.; Fu, X. Z. Bifunctional Pt−Co3O4 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis. J. Mater. Chem. A 2021, 9, 6316–6324.

    Article  CAS  Google Scholar 

  17. Pethaiah, S. S.; Sadasivuni, K. K.; Jayakumar, A.; Ponnamma, D.; Tiwary, C. S.; Sasikumar, G. Methanol electrolysis for hydrogen production using polymer electrolyte membrane: A mini-review. Energies 2020, 13, 5879.

    Article  CAS  Google Scholar 

  18. Muthumeenal, A.; Pethaiah, S. S.; Nagendran, A. Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol. Renewable Energy 2016, 91, 75–82.

    Article  CAS  Google Scholar 

  19. Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition-metal-doped ruir bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.

    Article  Google Scholar 

  20. Xu, Y.; Liu, M. Y.; Wang, M. Z.; Ren, T. L.; Ren, K. L.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Methanol electroreforming coupled to green hydrogen production over bifunctional NiIr-based metal-organic framework nanosheet arrays. Appl. Catal. B:Environ. 2022, 300, 120753.

    Article  CAS  Google Scholar 

  21. Yang, L.; Li, G. Q.; Ma, R. P.; Hou, S.; Chang, J. F.; Ruan, M. B.; Cai, W. B.; Jin, Z.; Xu, W. L.; Wang, G. L. et al. Nanocluster PtNiP supported on graphene as an efficient electrocatalyst for methanol oxidation reaction. Nano Res. 2021, 14, 2853–2860.

    Article  CAS  Google Scholar 

  22. Ma, R. P.; Wang, Y.; Li, G. Q.; Yang, L.; Liu, S. W.; Jin, Z.; Zhao, X.; Ge, J. J.; Xing, W. Tuning the oxidation state of Ru to surpass Pt in hydrogen evolution reaction. Nano Res. 2021, 14, 4321–4327.

    Article  CAS  Google Scholar 

  23. Zhao, Y.; Liu, Y. C.; Miao, B. Q.; Ding, Y.; Jin, P. J.; Chen, Y. One-dimensional rhodium-nickel alloy assemblies with nano-dendrite subunits for alkaline methanol oxidation. Chin. J. Struc. Chem. 2022, 41, 2204040–2204045.

    CAS  Google Scholar 

  24. Liao, L. L.; Cheng, C.; Zhou, H. Q.; Qi, Y.; Li, D. Y.; Cai, F. M.; Yu, B.; Long, R.; Yu, F. Accelerating pH-universal hydrogen-evolving activity of a hierarchical hybrid of cobalt and dinickel phosphides by interfacial chemical bonds. Mater. Today Phys. 2022, 22, 100589.

    Article  CAS  Google Scholar 

  25. Wu, F. X.; Eid, K.; Abdullah, A. M.; Niu, W. X.; Wang, C.; Lan, Y. X.; Elzatahry, A. A.; Xu, G. B. Unveiling one-pot template-free fabrication of exquisite multidimensional PtNi multicube nanoarchitectonics for the efficient electrochemical oxidation of ethanol and methanol with a great tolerance for CO. ACS Appl. Mater. Interfaces 2020, 12, 31309–31318.

    Article  CAS  Google Scholar 

  26. Tang, J.; Zhang, X. M.; Yu, S. S.; Wang, S. L.; Sun, G. Q. Performance and mechanism of PtxCuy/C electrocatalyst for methanol oxidation. J. Electrochem. 2021, 27, 508–517.

    CAS  Google Scholar 

  27. Fang, B.; Feng, L. G. PtCo−NC catalyst derived from the pyrolysis of Pt-incorporated ZIF-67 for alcohols fuel electrooxidation. Acta Phys. -Chim. Sin. 2020, 36, 1905023.

    Article  Google Scholar 

  28. Yue, X. Y.; Pu, Y. G.; Zhang, W.; Zhang, T.; Gao, W. Ultrafine Pt nanoparticles supported on double-shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts. J. Energy Chem. 2020, 49, 275–282.

    Article  Google Scholar 

  29. Zhang, K. F.; Wang, H. F.; Qiu, J.; Wu, J.; Wang, H. J.; Shao, J. W.; Deng, Y. Q.; Yan, L. F. Multi-dimensional Pt/Ni(OH)2/nitrogen-doped graphene nanocomposites with low platinum content for methanol oxidation reaction with highly catalytic performance. Chem. Eng. J. 2021, 421, 127786.

    Article  CAS  Google Scholar 

  30. Huang, H. J.; Zhu, J. X.; Li, D. B.; Shen, C.; Li, M. M.; Zhang, X.; Jiang, Q. G.; Zhang, J. F.; Wu, Y. P. Pt nanoparticles grown on 3D RuO2-modified graphene architectures for highly efficient methanol oxidation. J. Mater. Chem. A 2017, 5, 4560–4567.

    Article  CAS  Google Scholar 

  31. Duan, Y. Q.; Sun, Y.; Pan, S. Y.; Dai, Y.; Hao, L.; Zou, J. L. Self-stable WP/C support with excellent cocatalytic functionality for Pt: Enhanced catalytic activity and durability for methanol electro-oxidation. ACS Appl. Mater. Interfaces 2016, 8, 33572–33582.

    Article  CAS  Google Scholar 

  32. Li, M.; Feng, L. G. Advances of phosphide promoter assisted Pt based catalyst for electrooxidation of methanol. J. Electrochem. 2022, 28, 2106211.

    Google Scholar 

  33. Ding, X.; Li, M.; Jin, J. L.; Huang, X. B.; Wu, X.; Feng, L. G. Graphene aerogel supported Pt−Ni alloy as efficient electrocatalysts for alcohol fuel oxidation. Chin. Chem. Lett. 2022, 33, 2687–2691.

    Article  CAS  Google Scholar 

  34. Liu, X. B.; Liu, Y. C.; Fan, L. Z. MOF-derived CoSe2 microspheres with hollow interiors as high-performance electrocatalysts for the enhanced oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 15310–15314.

    Article  CAS  Google Scholar 

  35. Chen, D.; Zhang, Y. J.; Li, X.; Shen, J. W.; Chen, Z. X.; Cao, S. A.; Li, T.; Xu, F. CoSe2 hollow microspheres, nano-polyhedra and nanorods as pseudocapacitive Mg-storage materials with fast solidstate Mg2+ diffusion kinetics. Nanoscale 2019, 11, 23173–23181.

    Article  CAS  Google Scholar 

  36. Miao, C. X.; Xiao, X. H.; Gong, Y.; Zhu, K.; Cheng, K.; Ye, K.; Yan, J.; Cao, D. X.; Wang, G. L.; Xu, P. P. Facile synthesis of metal-organic framework-derived CoSe2 nanoparticles embedded in the N-doped carbon nanosheet array and application for supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 9365–9375.

    Article  CAS  Google Scholar 

  37. Peng, X.; Yan, Y. J.; Jin, X.; Huang, C.; Jin, W. H.; Gao, B.; Chu, P. K. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234.

    Article  CAS  Google Scholar 

  38. Li, Z. Y.; Zhang, L. Y.; Zhang, L.; Huang, J. M.; Liu, H. D. ZIF-67-derived CoSe/NC composites as anode materials for lithium-ion batteries. Nanoscale Res. Lett. 2019, 14, 358.

    Article  Google Scholar 

  39. Wang, S. L.; Zhu, J. Y.; Wu, X.; Feng, L. G. Microwave-assisted hydrothermal synthesis of NiMoO4 nanorods for high-performance urea electrooxidation. Chin. Chem. Lett. 2022, 33, 1105–1109.

    Article  CAS  Google Scholar 

  40. Zhou, Y.; Liu, D. Y.; Qiao, W.; Liu, Z.; Yang, J.; Feng, L. G. Ternary synergistic catalyst system of Pt−Cu−Mo2C with high activity and durability for alcohol oxidation. Mater. Today Phys. 2021, 17, 100357.

    Article  CAS  Google Scholar 

  41. Zhang, J. M.; Qu, X. M.; Han, Y.; Shen, L. F.; Yin, S. H.; Li, G.; Jiang, Y. X.; Sun, S. G. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance. Appl. Catal. B:Environ. 2020, 263, 118345.

    Article  CAS  Google Scholar 

  42. Bao, Y. F.; Feng, L. G. Formic acid electro-oxidation catalyzed by PdNi/graphene aerogel. Acta Phys. -Chim. Sin. 2021, 37, 2008031.

    Google Scholar 

  43. Bao, Y. F.; Zha, M.; Sun, P. L.; Hu, G. Z.; Feng, L. G. PdNi/N-doped graphene aerogel with over wide potential activity for formic acid electrooxidation. J. Energy Chem. 2021, 59, 748–754.

    Article  CAS  Google Scholar 

  44. Fang, B.; Liu, Z.; Bao, Y. F.; Feng, L. G. Unstable Ni leaching in MOF-derived PtNi−C catalyst with improved performance for alcohols fuel electro-oxidation. Chin. Chem. Lett. 2020, 31, 2259–2262.

    Article  CAS  Google Scholar 

  45. Xie, F.; Gan, M. Y.; Ma, L. Accurately manipulating hierarchical flower-like Fe2P@CoP@nitrogen-doped carbon spheres as an efficient carrier material of Pt-based catalyst. Nanoscale 2021, 13, 18226–18236.

    Article  CAS  Google Scholar 

  46. Li, D. Z.; Liu, Y.; Liu, Z.; Yang, J.; Hu, C. Q.; Feng, L. G. Electrochemical hydrogen evolution reaction efficiently catalyzed by Ru-N coupling in defect-rich Ru/g-C3N4 nanosheets. J. Mater. Chem. A 2021, 9, 15019–15026.

    Article  CAS  Google Scholar 

  47. Tian, J. W.; Li, J.; Zhang, Y. X.; Yu, X. Y.; Hong, Z. L. Carbon-coated CoSe2 nanoparticles confined in N-doped carbon microboxes with enhanced sodium storage properties. J. Mater. Chem. A 2019, 7, 21404–21409.

    Article  CAS  Google Scholar 

  48. Zhou, Y. W.; Chen, Y. F.; Jiang, K.; Liu, Z.; Mao, Z. J.; Zhang, W. Y.; Lin, W. F.; Cai, W. B. Probing the enhanced methanol electrooxidation mechanism on platinum-metal oxide catalyst. Appl. Catal. B:Environ. 2021, 280, 119393.

    Article  CAS  Google Scholar 

  49. Gong, W. H.; Jiang, Z.; Wu, R. F.; Liu, Y.; Huang, L.; Hu, N.; Tsiakaras, P.; Shen, P. K. Cross-double dumbbell-like Pt−Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Appl. Catal. B:Environ. 2019, 246, 277–283.

    Article  CAS  Google Scholar 

  50. Shan, A. X.; Huang, S. Y.; Zhao, H. F.; Jiang, W. G.; Teng, X. A.; Huang, Y. C.; Chen, C. P.; Wang, R. M.; Lau, W. M. Atomic-scaled surface engineering Ni−Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction. Nano Res. 2020, 13, 3088–3097.

    Article  CAS  Google Scholar 

  51. Li, J.; Wang, C.; Shang, H. Y.; Wang, Y.; You, H. M.; Xu, H.; Du, Y. K. Metal-modified PtTe2 nanorods: Surface reconstruction for efficient methanol oxidation electrocatalysis. Chem. Eng. J. 2021, 424, 130319.

    Article  CAS  Google Scholar 

  52. Xue, Q.; Bai, X. Y.; Zhao, Y.; Li, Y. N.; Wang, T. J.; Sun, H. Y.; Li, F. M.; Chen, P.; Jin, P. J.; Yin, S. B. et al. Au core-PtAu alloy shell nanowires for formic acid electrolysis. J. Energy Chem. 2022, 65, 94–102.

    Article  CAS  Google Scholar 

  53. Reier, T.; Nong, H. N.; Teschner, D.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts. Adv. Energy Mater. 2017, 7, 1601275.

    Article  Google Scholar 

  54. Wang, S. Q.; Cao, Y. L.; Jia, W.; Lu, Z. J.; Jia, D. Z. A cage-confinement strategy to fabricate Pt−Mo6Co6C heterojunction for highly efficient PH-universal hydrogen evolution. Appl. Catal. B:Environ. 2021, 298, 120579.

    Article  CAS  Google Scholar 

  55. Sun, J. P.; Hu, X. T.; Huang, Z. D.; Huang, T. X.; Wang, X. K.; Guo, H. L.; Dai, F. N.; Sun, D. F. Atomically thin defect-rich Ni−Se−S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Res. 2020, 13, 2056–2062.

    Article  CAS  Google Scholar 

  56. Zhang, L. L.; Lei, Y. T.; Zhou, D. N.; Xiong, C. L.; Jiang, Z. L.; Li, X. Y.; Shang, H. S.; Zhao, Y. F.; Chen, W. X.; Zhang, B. Interfacial engineering of 3D hollow CoSe2@ultrathin MoSe2 core@shell heterostructure for efficient pH-universal hydrogen evolution reaction. Nano Res. 2022, 15, 2895–2904.

    Article  CAS  Google Scholar 

  57. Pan, S. Y.; Ma, S. X.; Chang, C. F.; Long, X.; Qu, K. G.; Yang, Z. H. Activation of rhodium selenides for boosted hydrogen evolution reaction via heterostructure construction. Mater. Today Phys. 2021, 18, 100401.

    Article  CAS  Google Scholar 

  58. Guo, F.; Zou, Z. J.; Zhang, Z. Y.; Zeng, T.; Tan, Y. Y.; Chen, R. Z.; Wu, W.; Cheng, N. C.; Sun, X. L. Confined sub-nanometer PtCo clusters as a highly efficient and robust electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 5468–5474.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 21972124), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institution. L. Feng also thanks the support of the Six Talent Peaks Project of Jiangsu Province (XCL-070-2018) and the support of Yangzhou Municipal Science and Technology Planning Project (No. YZ2020028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligang Feng.

Electronic Supplementary Material

12274_2022_4907_MOESM1_ESM.pdf

Efficient bifunctional catalysts of CoSe/N-doped carbon nanospheres supported Pt nanoparticles for methanol electrolysis of hydrogen generation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wang, Q., Tian, X. et al. Efficient bifunctional catalysts of CoSe/N-doped carbon nanospheres supported Pt nanoparticles for methanol electrolysis of hydrogen generation. Nano Res. 15, 8936–8945 (2022). https://doi.org/10.1007/s12274-022-4907-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4907-0

Keywords

Navigation